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Abstract—This paper presented my work of using a 

discriminative model to segment the colors in a single image. 

Our goal is to use the logistic regression to find the decision 

boundary between two classes. 

Keywords—Logistic Regression, Color Segmentation 

I. INTRODUCTION  

In many applications of computer vision or image 
procession, the goal is to extract information from image data. 
Although humans can easily segment the objects in an image, 
performing segmentation is not straight forward for 
computers. Color segmentation is to a very useful technique 
to extract regions of interest in an image by segmenting the 
colors. It is widely used in computer vision and machine 
learning problems nowadays. It is a fundamental process of 
image processing. Successfully extract the region of interest 
can aid the higher-level process such as classification and 
detection. 

Numerous segmentation techniques have been proposed in 
this literature such as thresholding or edge detection. 
However, most of the techniques are done on gray scale 
image. In this paper, we are going to solve the segmentation 
problem using colors, which is classified using a logistic 
regression model. It uses a discriminative model for discrete 
labels and is trained using gradient descent. 

In our case, we are trying to separate the blue barrels from 
a color image. Our approach is to train a discriminative model 
to classify each pixel into “blue barrel” or “not blue barrel”. 
Then we segment these “blue barrel” regions and determine 
the “barrelness” of these regions. We will split our data into 
training set and test set. We will train our model on training 
samples and test on test samples. 

II. PROBLEM FORMULATION 

A. Logistic Regression 

The Logistic Regression is a discriminative model 
𝑝(𝑦|𝑋, 𝑤) for the discrete labels 𝑦 that is a product of sigmoid 
function 

                           𝑝(𝑌|𝑋,𝑤) = ∏ 𝜎(𝑦𝑖𝑥𝑖
𝑇𝑤)𝑛

𝑖=1                      (1) 

where 𝑋 ∈ ℝ𝑛×3  and 𝑌 ∈ ℝ𝑛×1  is our training data and 
corresponding labels of n examples. Each label 𝑦 ∈ {−1,1}, 
where 1 indicate it is blue and -1 indicate it is not blue. Each 
data point  𝑥 ∈ ℝ3 is a vector consist RGB value of a pixel. 
The weight of the discriminative model is 𝑤 ∈ ℝ3 . 𝜎(𝑥) is 
sigmoid function where  

                               𝜎(𝑥) =
1

1+exp(−𝑥)
                                      (2) 

 Our problem is to obtain the optimal weights of this 
discriminative model. To solve this, we are going to use the 
Maximum Likelihood Estimation (MLE), which leads to  

                        𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

𝑝(𝑌|𝑋, 𝑤)                       (3) 

 After we obtain the optimal weights 𝑤∗, we can predict 
the label for a given example 𝑥∗ as 

                           𝑦∗ = {
−1, 𝑥∗𝑇𝑤∗ < 0
1, 𝑥∗𝑇𝑤∗ ≥ 0

                              (4) 

where 𝑦∗ is the prediction of a given example 𝑥∗. If 𝑦∗is 1, 
the pixel is classified as blue and 𝑦∗ = -1 indicates the pixel 
is not blue. 

B. Find blue barrels 

For a given color image 𝐼, we can present each pixel as 
𝐼(𝑖, 𝑗) ∈ ℝ3  where 𝑖  indicates ith row and 𝑗  indicates jth 
column of the image 𝐼. We want to extract the blue region in 
image 𝐼 by applying our discriminative model to each pixel. 

After we classified every pixel in image 𝐼, we can get a 
mask of the image. Then we can extract the regions of interest 
from the mask and determine the “barrelness” of those 
regions. Finally we want to draw a bounding box for each blue 
barrel in the image and output the coordinates of the bounding 
box (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) , where (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛)  is the 
coordinate of the top left corner of the bounding box and 
(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) is the coordinate of the bottom right corner of 
the bounding box. 

III. TECHNICAL APPROACH 

A. Obtain the training data 

Our training set consists color images which contain 

blue barrels. To obtain the training samples, we are going to 

use roipoly [1] to hand-label appropriate regions in the 

images with labels “blue” and “not blue”. 

Roipoly only takes in grayscale image, so we first 

convert the color images to grayscale. To obtain the positive 

samples, we need to draw polygons within the blue barrels. 

Then, we can obtain the masks of selected regions from 

roipoly. Finally, we apply the masks on the original color 

images and extract the pixel value from the masked images, 

and label them as y = 1. 

To obtain the negative samples, we use the same 

process, but instead of drawing polygons within blue 

barrels, we draw polygons on not blue barrel regions, and 

we label them as y = -1. 

B. Train the model 

The discriminative model 𝑝(𝑌|𝑋, 𝑤) we are going to use 
is the logistic regression stated in (1). Combined with the 
sigmoid function stated in (2), we can write our model as 

                  𝑝(𝑌|𝑋, 𝑤) = ∏
1

1+exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)

𝑛
𝑖=1                       (5) 

We want to optimize the weights 𝑤 using the maximum 
likelihood estimation as we stated in (3). Noting that applying 



logarithm to the argument of maxima does not affect the 
result, so we can write our MLE problem as 

                     𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

log𝑝(𝑌|𝑋, 𝑤)               (6)  

Combined (6) with (5), we can get 

         𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

∑ log (
1

1+exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)

)𝑛
𝑖=1           (7)  

       𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔min
𝑤

∑ log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤))𝑛

𝑖=1     (8) 

So now, solving this MLE problem is equivalent to find 
the minimum of this function as we showed in (8). One way 
to find the global minimum of a function is checking this 
function is convex, and then taking the derivative of this 
function and set to 0. We know log(1 + 𝑒𝑥𝑝(𝑥)) is convex 

and −𝑦𝑖𝑥𝑖
𝑇𝑤  is an affine function. The sum of convex 

functions is also a convex function. Then, we just need to take 
the derivative of the function in (8) with respect to 𝑤 and set 
it to 0. In our case is 

                   ∇𝑤 ∑ log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤))𝑛

𝑖=1                   (9) 

Which is equivalent to 

                           ∇𝑤(−log𝑝(𝑌|𝑋, 𝑤))                          (10) 

However, the function in (10) does not have a closed form 
solution. Therefore, we are going to minimize this function 
using an iterative approach, gradient descent. This algorithm 
can be presented as 

𝑤𝑀𝐿𝐸
(𝑡+1)

= 𝑤𝑀𝐿𝐸
(𝑡)

− 𝛼∇𝑤(− log 𝑝(𝑌|𝑋, 𝑤))|
𝑤=𝑤𝑀𝐿𝐸

(𝑡)  

= 𝑤𝑀𝐿𝐸
(𝑡)

− 𝛼∑
1

(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))

𝑛

𝑖=1

(exp(−𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))(−𝑦𝑖𝑥𝑖) 

                         = 𝑤𝑀𝐿𝐸
(𝑡)

+ 𝛼 ∑ (𝑦𝑖𝑥𝑖)(1 − 𝜎(𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))𝑛

𝑖=1                    (11) 

where 𝑤𝑀𝐿𝐸
(𝑡)

 indicates the weights result in tth iteration,  

𝑤𝑀𝐿𝐸
(𝑡+1)

 indicates the weights result in (t+1)th iteration, and 𝛼 is 

the step size of gradient descent. 

C. Draw bounding box on blue barrels 

 After we obtain the optimal weights 𝑤∗, we can determine 
if a pixel is belong to “blue barrels” on test images using this 
discriminative model as we stated in (4). 

 To segment the blue barrels from the image, we want to 
generate a binary mask of blue pixels. Let 𝐼 be a test image 
and 𝐼(𝑖, 𝑗) ∈ ℝ3 indicates an RGB pixel value of the pixel in 
ith row and jth column. We can generate a mask of detected 
“blue barrel” region by implementing this: 

for i from 0 to height of 𝐼: 

 for j from 0 to width of 𝐼: 

  if 𝐼(𝑖, 𝑗)𝑇𝑤∗ > 0 : 

   mask(i,j) = 1 

  else: 

   mask(i,j) = 0 

 After we get the mask of the detected “blue barrel” 
regions, we can easily find the contours of these regions using 
findContours [2] function in opencv. There might be some 
small noises in our detection. However, on way for us to filter 
out those small noises is thresholding the contour’s area, 

which can be computed by contourArea. Another way to deal 
with the noises is using dilation and erosion method [3] which 
is also provided by OpenCV. 

 Next, we can use regionprops [4] to get the bounding box 
coordinates (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) , from those contours 
and draw the bounding boxes on original test images. 

IV. RESULT 

For my implementation, I trained the Logistic Regression 
model for 10 iterations with step size 𝛼 = 0.0001 and initial 

weights 𝑤(0) = (0,0,0)𝑇.  

For each iteration the weights and the error rate are below: 

Iteration               Weights Error rate 

1 (-9.25, -6.89, -3.79) 0.0187 

2       (-8.19, -3.14, 3.54) 0.0065 

3       (-8.09, -6.02, 2.07) 0.0043 

4       (-9.33, -2.94, 5.73) 0.001 

5       (-9.64, -2.8, 6.6) 0.0028 

6       (-10.16-, 3.97, 2.9) 0.0027 

7       (-10.59, -3.14, 7.31) 0.0029 

8       (-10.99, -3.28, 7.66) 0.003 

9       (-11.35, -3.4, 7.98) 0.0031 

10       (-11.69, -3.52, 8.28) 0.00316 

 

For the error rate, I hand-label a mask as the ground truth 
and summing the square of the difference between prediction 
and ground truth mask.  

𝑒𝑟𝑟𝑜𝑟 =  ∑ ∑
(𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ(𝑖, 𝑗) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗))2

𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑖𝑑𝑡ℎ

𝑗=0

ℎ𝑒𝑖𝑔ℎ𝑡

𝑖=0

 

 

As we can see, the error is the lowest on the 4th iteration, 
so I choose my weights to be 𝑤∗ = (−9.33, −2.94,5.73)𝑇 

Below is my result for 5 test images. 

Test image 1 

 
Fig. 1 Mask, test image 1 

 

 



 
Fig. 2 Resulting bounding box, test image 1 

 For test image 1, the coordinates of the bounding box are 
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (592, 404, 669, 528), which is 
what we expected. 

Test image 2 

 
Fig. 3 Mask, test image 2 

 

 

 
Fig. 4 Resulting bounding box, test image 2 

 For test image 2, the coordinates of the bounding box are 
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (466, 260, 615, 531). The right 
side of the bounding box is not exactly lie on blue barrel. I 
think that is because the blue tubes around the barrel cause 
some false positives on my detection. As we can see in the 
Fig. 3, those small white dots are false positives caused by 
blue tubes, that might be the reason why the bounding box is 
a little bit off. 

Test image 3 

 
Fig. 5 Mask, test image 3 

 

 
Fig. 6 Resulting bounding box, test image 3 

 For test image 3, the coordinates of the bounding box are 
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (608, 226, 681, 306). This 
result is not so good as before, the bounding box is only 
circling upper half of the blue barrel. I think that is because 
the lower half of the too dark to be detected by my classifier. 
Our model is not robust enough to detect the barrel blue in 
other lighting conditions. 

 

Test image 4 

 
Fig. 7 Mask, test image 4 

 



 
Fig. 8 Resulting bounding box, test image 4 

 For test image 4, the coordinates of the bounding box are 
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (548, 86, 597, 176). This 
resulting bounding box is also good. From the mask in the 
Fig. 7, we can see that our model outputs false positives 
caused by the blue trash can. However, through some 
morphological transformation and filtering, we can eliminate 
those false positives from the final result.    

Test image 5 

 
Fig. 9 Mask, test image 5 

 

 
Fig. 10 Resulting bounding box, test image 5 

For test image 5, the coordinates of the bounding box are 
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (539, 352, 571, 397), 
(562, 407, 641, 497). We can see result here is not quite 
good. In the image, the blue barrel is in front of a blue wall, 
which makes our classifier generates many false positives 
just around our target. This indicates that our model is not 
robust enough to distinguish the blue of the barrels from the 
blue of other things. In order to get better bounding boxes, 
we might need some higher-level image processing or 
analysis other than color segmentation.  

CONCLUSION 

 In this project, we are trying to detect the blue barrels using 
color segmentation which is implemented by a logistic 
regression model. After training with provided samples in 
RBG color space, we can see that our model works well in 
most of the cases. However, our model is not robust enough 
to distinguish the barrel blue and not barrel blue, which might 
be solved using more complex discriminative model. 
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