

Using Logistic Regression Approach for Color

Segmantation

Jingpei Lu

Jacobs School of Engineering

University of California, San Diego

jil360@ucsd.edu

Abstract—This paper presented my work of using a

discriminative model to segment the colors in a single image.

Our goal is to use the logistic regression to find the decision

boundary between two classes.

Keywords—Logistic Regression, Color Segmentation

I. INTRODUCTION

In many applications of computer vision or image
procession, the goal is to extract information from image data.
Although humans can easily segment the objects in an image,
performing segmentation is not straight forward for
computers. Color segmentation is to a very useful technique
to extract regions of interest in an image by segmenting the
colors. It is widely used in computer vision and machine
learning problems nowadays. It is a fundamental process of
image processing. Successfully extract the region of interest
can aid the higher-level process such as classification and
detection.

Numerous segmentation techniques have been proposed in
this literature such as thresholding or edge detection.
However, most of the techniques are done on gray scale
image. In this paper, we are going to solve the segmentation
problem using colors, which is classified using a logistic
regression model. It uses a discriminative model for discrete
labels and is trained using gradient descent.

In our case, we are trying to separate the blue barrels from
a color image. Our approach is to train a discriminative model
to classify each pixel into “blue barrel” or “not blue barrel”.
Then we segment these “blue barrel” regions and determine
the “barrelness” of these regions. We will split our data into
training set and test set. We will train our model on training
samples and test on test samples.

II. PROBLEM FORMULATION

A. Logistic Regression

The Logistic Regression is a discriminative model
𝑝(𝑦|𝑋, 𝑤) for the discrete labels 𝑦 that is a product of sigmoid
function

 𝑝(𝑌|𝑋,𝑤) = ∏ 𝜎(𝑦𝑖𝑥𝑖
𝑇𝑤)𝑛

𝑖=1 (1)

where 𝑋 ∈ ℝ𝑛×3 and 𝑌 ∈ ℝ𝑛×1 is our training data and
corresponding labels of n examples. Each label 𝑦 ∈ {−1,1},
where 1 indicate it is blue and -1 indicate it is not blue. Each
data point 𝑥 ∈ ℝ3 is a vector consist RGB value of a pixel.
The weight of the discriminative model is 𝑤 ∈ ℝ3 . 𝜎(𝑥) is
sigmoid function where

 𝜎(𝑥) =
1

1+exp(−𝑥)
 (2)

 Our problem is to obtain the optimal weights of this
discriminative model. To solve this, we are going to use the
Maximum Likelihood Estimation (MLE), which leads to

 𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

𝑝(𝑌|𝑋, 𝑤) (3)

 After we obtain the optimal weights 𝑤∗, we can predict
the label for a given example 𝑥∗ as

 𝑦∗ = {
−1, 𝑥∗𝑇𝑤∗ < 0
1, 𝑥∗𝑇𝑤∗ ≥ 0

 (4)

where 𝑦∗ is the prediction of a given example 𝑥∗. If 𝑦∗is 1,
the pixel is classified as blue and 𝑦∗ = -1 indicates the pixel
is not blue.

B. Find blue barrels

For a given color image 𝐼, we can present each pixel as
𝐼(𝑖, 𝑗) ∈ ℝ3 where 𝑖 indicates ith row and 𝑗 indicates jth
column of the image 𝐼. We want to extract the blue region in
image 𝐼 by applying our discriminative model to each pixel.

After we classified every pixel in image 𝐼, we can get a
mask of the image. Then we can extract the regions of interest
from the mask and determine the “barrelness” of those
regions. Finally we want to draw a bounding box for each blue
barrel in the image and output the coordinates of the bounding
box (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) , where (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛) is the
coordinate of the top left corner of the bounding box and
(𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) is the coordinate of the bottom right corner of
the bounding box.

III. TECHNICAL APPROACH

A. Obtain the training data

Our training set consists color images which contain

blue barrels. To obtain the training samples, we are going to

use roipoly [1] to hand-label appropriate regions in the

images with labels “blue” and “not blue”.

Roipoly only takes in grayscale image, so we first

convert the color images to grayscale. To obtain the positive

samples, we need to draw polygons within the blue barrels.

Then, we can obtain the masks of selected regions from

roipoly. Finally, we apply the masks on the original color

images and extract the pixel value from the masked images,

and label them as y = 1.

To obtain the negative samples, we use the same

process, but instead of drawing polygons within blue

barrels, we draw polygons on not blue barrel regions, and

we label them as y = -1.

B. Train the model

The discriminative model 𝑝(𝑌|𝑋, 𝑤) we are going to use
is the logistic regression stated in (1). Combined with the
sigmoid function stated in (2), we can write our model as

 𝑝(𝑌|𝑋, 𝑤) = ∏
1

1+exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)

𝑛
𝑖=1 (5)

We want to optimize the weights 𝑤 using the maximum
likelihood estimation as we stated in (3). Noting that applying

logarithm to the argument of maxima does not affect the
result, so we can write our MLE problem as

 𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

log𝑝(𝑌|𝑋, 𝑤) (6)

Combined (6) with (5), we can get

 𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔max
𝑤

∑ log (
1

1+exp(−𝑦𝑖𝑥𝑖
𝑇𝑤)

)𝑛
𝑖=1 (7)

 𝑤𝑀𝐿𝐸 = 𝑎𝑟𝑔min
𝑤

∑ log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤))𝑛

𝑖=1 (8)

So now, solving this MLE problem is equivalent to find
the minimum of this function as we showed in (8). One way
to find the global minimum of a function is checking this
function is convex, and then taking the derivative of this
function and set to 0. We know log(1 + 𝑒𝑥𝑝(𝑥)) is convex

and −𝑦𝑖𝑥𝑖
𝑇𝑤 is an affine function. The sum of convex

functions is also a convex function. Then, we just need to take
the derivative of the function in (8) with respect to 𝑤 and set
it to 0. In our case is

 ∇𝑤 ∑ log(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤))𝑛

𝑖=1 (9)

Which is equivalent to

 ∇𝑤(−log𝑝(𝑌|𝑋, 𝑤)) (10)

However, the function in (10) does not have a closed form
solution. Therefore, we are going to minimize this function
using an iterative approach, gradient descent. This algorithm
can be presented as

𝑤𝑀𝐿𝐸
(𝑡+1)

= 𝑤𝑀𝐿𝐸
(𝑡)

− 𝛼∇𝑤(− log 𝑝(𝑌|𝑋, 𝑤))|
𝑤=𝑤𝑀𝐿𝐸

(𝑡)

= 𝑤𝑀𝐿𝐸
(𝑡)

− 𝛼∑
1

(1 + exp(−𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))

𝑛

𝑖=1

(exp(−𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))(−𝑦𝑖𝑥𝑖)

 = 𝑤𝑀𝐿𝐸
(𝑡)

+ 𝛼 ∑ (𝑦𝑖𝑥𝑖)(1 − 𝜎(𝑦𝑖𝑥𝑖
𝑇𝑤𝑀𝐿𝐸

(𝑡)
))𝑛

𝑖=1 (11)

where 𝑤𝑀𝐿𝐸
(𝑡)

 indicates the weights result in tth iteration,

𝑤𝑀𝐿𝐸
(𝑡+1)

 indicates the weights result in (t+1)th iteration, and 𝛼 is

the step size of gradient descent.

C. Draw bounding box on blue barrels

 After we obtain the optimal weights 𝑤∗, we can determine
if a pixel is belong to “blue barrels” on test images using this
discriminative model as we stated in (4).

 To segment the blue barrels from the image, we want to
generate a binary mask of blue pixels. Let 𝐼 be a test image
and 𝐼(𝑖, 𝑗) ∈ ℝ3 indicates an RGB pixel value of the pixel in
ith row and jth column. We can generate a mask of detected
“blue barrel” region by implementing this:

for i from 0 to height of 𝐼:

 for j from 0 to width of 𝐼:

 if 𝐼(𝑖, 𝑗)𝑇𝑤∗ > 0 :

 mask(i,j) = 1

 else:

 mask(i,j) = 0

 After we get the mask of the detected “blue barrel”
regions, we can easily find the contours of these regions using
findContours [2] function in opencv. There might be some
small noises in our detection. However, on way for us to filter
out those small noises is thresholding the contour’s area,

which can be computed by contourArea. Another way to deal
with the noises is using dilation and erosion method [3] which
is also provided by OpenCV.

 Next, we can use regionprops [4] to get the bounding box
coordinates (𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) , from those contours
and draw the bounding boxes on original test images.

IV. RESULT

For my implementation, I trained the Logistic Regression
model for 10 iterations with step size 𝛼 = 0.0001 and initial

weights 𝑤(0) = (0,0,0)𝑇.

For each iteration the weights and the error rate are below:

Iteration Weights Error rate

1 (-9.25, -6.89, -3.79) 0.0187

2 (-8.19, -3.14, 3.54) 0.0065

3 (-8.09, -6.02, 2.07) 0.0043

4 (-9.33, -2.94, 5.73) 0.001

5 (-9.64, -2.8, 6.6) 0.0028

6 (-10.16-, 3.97, 2.9) 0.0027

7 (-10.59, -3.14, 7.31) 0.0029

8 (-10.99, -3.28, 7.66) 0.003

9 (-11.35, -3.4, 7.98) 0.0031

10 (-11.69, -3.52, 8.28) 0.00316

For the error rate, I hand-label a mask as the ground truth
and summing the square of the difference between prediction
and ground truth mask.

𝑒𝑟𝑟𝑜𝑟 = ∑ ∑
(𝑔𝑟𝑜𝑢𝑛𝑑𝑡𝑟𝑢𝑡ℎ(𝑖, 𝑗) − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗))2

𝑤𝑖𝑑𝑡ℎ ∗ ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑖𝑑𝑡ℎ

𝑗=0

ℎ𝑒𝑖𝑔ℎ𝑡

𝑖=0

As we can see, the error is the lowest on the 4th iteration,
so I choose my weights to be 𝑤∗ = (−9.33, −2.94,5.73)𝑇

Below is my result for 5 test images.

Test image 1

Fig. 1 Mask, test image 1

Fig. 2 Resulting bounding box, test image 1

 For test image 1, the coordinates of the bounding box are
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (592, 404, 669, 528), which is
what we expected.

Test image 2

Fig. 3 Mask, test image 2

Fig. 4 Resulting bounding box, test image 2

 For test image 2, the coordinates of the bounding box are
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (466, 260, 615, 531). The right
side of the bounding box is not exactly lie on blue barrel. I
think that is because the blue tubes around the barrel cause
some false positives on my detection. As we can see in the
Fig. 3, those small white dots are false positives caused by
blue tubes, that might be the reason why the bounding box is
a little bit off.

Test image 3

Fig. 5 Mask, test image 3

Fig. 6 Resulting bounding box, test image 3

 For test image 3, the coordinates of the bounding box are
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (608, 226, 681, 306). This
result is not so good as before, the bounding box is only
circling upper half of the blue barrel. I think that is because
the lower half of the too dark to be detected by my classifier.
Our model is not robust enough to detect the barrel blue in
other lighting conditions.

Test image 4

Fig. 7 Mask, test image 4

Fig. 8 Resulting bounding box, test image 4

 For test image 4, the coordinates of the bounding box are
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (548, 86, 597, 176). This
resulting bounding box is also good. From the mask in the
Fig. 7, we can see that our model outputs false positives
caused by the blue trash can. However, through some
morphological transformation and filtering, we can eliminate
those false positives from the final result.

Test image 5

Fig. 9 Mask, test image 5

Fig. 10 Resulting bounding box, test image 5

For test image 5, the coordinates of the bounding box are
(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) = (539, 352, 571, 397),
(562, 407, 641, 497). We can see result here is not quite
good. In the image, the blue barrel is in front of a blue wall,
which makes our classifier generates many false positives
just around our target. This indicates that our model is not
robust enough to distinguish the blue of the barrels from the
blue of other things. In order to get better bounding boxes,
we might need some higher-level image processing or
analysis other than color segmentation.

CONCLUSION

 In this project, we are trying to detect the blue barrels using
color segmentation which is implemented by a logistic
regression model. After training with provided samples in
RBG color space, we can see that our model works well in
most of the cases. However, our model is not robust enough
to distinguish the barrel blue and not barrel blue, which might
be solved using more complex discriminative model.

REFERENCES

[1] Roipoly. Retrived from https://github.com/jdoepfert/roipoly.py

[2] OpenCV, findContours. Retrived from

https://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_
and_shape_descriptors.html

[3] OpenCV, Mophological Transformation. Retrived from
https://docs.opencv.org/3.0-
beta/doc/py_tutorials/py_imgproc/py_morphological_ops/py_morpho
logical_ops.html

[4] Skimage, regionprops. Retrived from

http://scikit-
image.org/docs/dev/api/skimage.measure.html#skimage.measure.regi
onprops

	I. Introduction
	II. Problem Formulation
	A. Logistic Regression
	B. Find blue barrels

	III. Technical Approach
	A. Obtain the training data
	B. Train the model
	C. Draw bounding box on blue barrels

	IV. Result
	Conclusion
	References

