

Simultaneous Localization and Mapping (SLAM)

Using Particle Filter

Jingpei Lu

Jacobs School of Engineering

University of California, San Diego

jil360@ucsd.edu

Abstract—This paper presented my work of using particle

filter to implement SLAM Algorithm. Our goal is to use the

given LIDAR, IMU, and encoder data to localize our robot and

create the map simultaneously. In our implementation, we will

use the laser observation model and differential-drive motion

model and use particle filter to predict and update. Then we will

use RGBD data to create the texture map.

Keywords—SLAM, Particle Filter, Localization, differential-

drive motion model, Laser observation model, Texture mapping

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a
fundamental and important problem in robotic mapping and
navigation. It is the computational problem of constructing or
updating a map of an unknown environment while
simultaneously keeping track of an agent's location within it.
Its applications including self-driving cars, unmanned aerial
vehicles, and autonomous underwater vehicles.

Nowadays, there are several popular algorithms known for
solving or providing approximate solution for the SLAM
problem. For example, Particle filter, Kalman filter, and
GraphSLAM. Particle filters comprise a broad family of
sequential Monte Carlo algorithms for approximate inference
in partially observable Markov chain. Using the particle filter,
we are able to solve the localization problem and estimate the
robot’s pose. In this paper, we are going to focus on the math
of the particle filter and its implementation on predicting the
pose and localizing the robot using the given data.
Specifically, we are going to use the IMU, odometry, and laser
measurements to localize the robot and build a 2-D occupancy
grid map of the environment.

Our approach of solving the SLAM problem can be
divided into two major parts, prediction and update. We treat
each particle as one of our potential robots. In prediction step,
we are going to use the differential-drive model to predict the
motion of each particle. In the update step, we are going to use
the laser scan from each particle and use the laser observation
model to compute map correlation. Then we choose the
particle has the best map correlation, project the laser scan,
and update the map. Finally we can use the RBGD data to
texturize the map.

II. PROBLEM FORMULATION

A. Structure of Robotics Problem

In robotics problem, we are generally interested in these

parameters: time 𝑡, robot state 𝑥𝑡, control input 𝑢𝑡 ,
observation 𝑧𝑡, environment state 𝑚𝑡. Usually, the sequence

of control inputs and observations are assumed known, and

we are interested in estimating the robot states and

environment states. Under the Markov Assumptions, the

state 𝑥𝑡+1 only depends on the previous input 𝑢𝑡 and state 𝑥𝑡,

and the observation 𝑧𝑡 only depends on the robot state 𝑥𝑡 and

the environment state 𝑚𝑡.

Figure 1

Figure 1is the Markov Chain which representing the

relationship between the parameters.

Under Markov Assumption, we can decompose the joint

probability density function of state 𝑥0:𝑡, observation 𝑧0:𝑡,
and controls 𝑢0:𝑡−1 as below

𝑝(𝑥0:𝑇 , 𝑧0:𝑇 , 𝑢0:𝑇−1) = 𝑝0|0(𝑥0)∏𝑝ℎ(𝑧𝑡|𝑥𝑡)

𝑇

𝑡=0

∏𝑝𝑓(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

𝑇

𝑡=0

 (1)

where 𝑝0|0(𝑥0) is prior, 𝑝ℎ(𝑧𝑡|𝑥𝑡) is observation model, and

𝑝𝑓(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) is motion model. We will discuss these

models and how to use them to predict and update the

probability of robot states for our particle filter later.

B. Mapping

In our case, we don’t have the ground truth map
beforehand. So, one way to approximate the map of the
environment is to do the lidar-based mapping. Given the robot
trajectory 𝑥0:𝑡 and a sequence of lidar scans 𝑧0:𝑡, we are going
to build an occupancy grid map 𝑚 of the environment.

𝑚𝑖|𝑧0:𝑡 = {
1 (𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝛾𝑖,𝑡

0 (𝑓𝑟𝑒𝑒), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 1 − 𝛾𝑖,𝑡
 (2)

Where 𝑚𝑖 is the 𝑖 th cell of our map 𝑚 and 𝛾𝑖,𝑡 is the

occupancy probability of 𝑖th cell in time 𝑡.

𝛾𝑖,𝑡: = 𝑝(𝑚𝑖 = 1|𝑧0,𝑡 , 𝑥0,𝑡) (3)

 For a binary random variable 𝑚𝑖 , maintaining the
probability density function is equivalent to maintain the log-
odds 𝜆𝑖,𝑡 of each cell, since

𝛾𝑖,𝑡 = 1 −
1

1 + exp(𝜆𝑖,𝑡)
 (4)

where 𝜆𝑖,𝑡 can be obtained by

𝜆𝑖,𝑡 = 𝜆𝑖,𝑡−1 + 𝑙𝑜𝑔𝑔ℎ(𝑧𝑡|𝑚𝑖 , 𝑥𝑡) (5)

Here, 𝑔ℎ(𝑧𝑡|𝑚𝑖 , 𝑥𝑡) is our believes relating to the observation
model. To simply the model, we choose it to be 4 if it is
occupied and ¼ if it is free.

C. Prediction

For particle filter, the prior 𝑝𝑡|𝑡(𝑥) at time t is defined by

 𝑝𝑡|𝑡(𝑥) =∑𝛼𝑡|𝑡
(𝑘)𝛿(𝑥𝑡; 𝜇𝑡|𝑡

(𝑘)
)

𝑁

𝑘=1

 (6)

where 𝑁 is the number of particles, 𝛼𝑡|𝑡
(𝑘)

 is the weight of 𝑘th

particle at time t and 𝜇𝑡|𝑡
(𝑘)
∈ 𝑆𝐸(2) is the pose (state) of the

𝑘th particle at time t.

Given a new control input 𝑢𝑡 and current state 𝑥𝑡 , the
predicted probability density function of particle filter can be
represented as

𝑝𝑡+1|𝑡(𝑥) ≈ ∑𝛼𝑡+1|𝑡
(𝑘) 𝛿(𝑥; 𝜇𝑡+1|𝑡

(𝑘)
)

𝑁

𝑘=1

 (7)

Here, 𝛼𝑡+1|𝑡
(𝑘)

 is the weight of the 𝑘th particle at time t+1, and

in our case, this should be the same as the weight in time t.

𝜇𝑡+1|𝑡
(𝑘)

 is the predicted pose of the 𝑘th particle, and it can be

obtained using the motion model. In our case, we are using the
differential-drive motion model. Then for each particle, its
estimated pose can be described as

𝜇𝑡+1|𝑡 = 𝑓(𝜇𝑡|𝑡 , 𝑢𝑡)

 = 𝜇𝑡|𝑡 + 𝜏

(

𝑣𝑡𝑠𝑖𝑛𝑐 (

𝑤𝑡𝜏

2
) cos (𝜃𝑡 +

𝑤𝑡𝜏

2
)

𝑣𝑡𝑠𝑖𝑛𝑐 (
𝑤𝑡𝜏

2
)sin (𝜃𝑡 +

𝑤𝑡𝜏

2
)

𝑤𝑡)

 (8)

Here, 𝜏 is the time difference, 𝜃𝑡 ∈ (−𝜋, 𝜋] is the yaw angle
at time t. 𝑤𝑡 ∈ ℝ is the rotational velocity (yaw rate), which
can be obtained by IMU. 𝑣𝑡 ∈ ℝ is the linear velocity at time
t, which can be obtained by encoder.

D. Update

For particle filter, given a new observation 𝑧𝑡+1, we can

update the probability density function of particle filter at

time t+1 based on the observation model as

𝑝𝑡+1|𝑡+1(𝑥) =∑[
𝛼𝑡+1|𝑡
(𝑘) 𝑝ℎ(𝑧𝑡+1|𝜇𝑡+1|𝑡

(𝑘))

∑ 𝛼𝑡+1|𝑡
(𝑗) 𝑝ℎ(𝑧𝑡+1|𝜇𝑡+1|𝑡

(𝑗))𝑁
𝑗=1

]

𝑁

𝑘=1

𝛿(𝑥; 𝜇𝑡+1|𝑡
(𝑘)) (9)

Here, 𝑝ℎ is our observation model. In our case, we are going
to use Laser Correlation model as our observation model. The
Laser Correlation model is defined as

𝑝ℎ(z|𝑥,𝑚) =
exp(𝑐𝑜𝑟𝑟(𝑦,𝑚))

∑ exp(𝑐𝑜𝑟𝑟(𝑣,𝑚))𝑣

 (10)

where 𝑦 is our observation (laser data) transformed into grid
map, and 𝑚 is our grid map. The correlation function 𝑐𝑜𝑟𝑟 is
defined as

𝑐𝑜𝑟𝑟(𝑦,𝑚) =∑1

𝑖

{𝑚𝑖 = 𝑦𝑖} (11)

So, our observation model is proportional to the correlation
of the laser scan and grid map at time t.

E. Projection Function

 Given a point 𝑥 ∈ ℝ3 in world frame, we can find the
corresponding point 𝑦 ∈ ℝ2 using the following projection
function.

𝑦 = 𝐾𝜋(𝑅𝑜𝑐𝑅𝑐𝑤
𝑇 (𝑥 − 𝑝)) (12)

Here, 𝐾 ∈ ℝ3∗3 is an intrinsic parameter matrix, 𝑅𝑜𝑐 is the

rotation from camera frame to optical frame, 𝑅𝑐𝑤 ∈ 𝑆𝑂(3)
is the rotation from world frame to camera frame, 𝑝 is the

transition from world origin to camera position, and 𝜋 is

defined as 𝜋(𝑎) =
1

𝑎3
𝑎 for a vector 𝑎 ∈ ℝ3.

III. TECHNICAL APPROACH

A. Initialization and Data Synchronization

Our data set consists laser scans, IMU, and encoder data,

but they are from different sensors, so they have different

timestamps. In order to use these data, we need to find

associate data for each timestamp. To simplify, we are going

to use the timestamp of the encoder data as our reference.

To find the IMU data and laser scans associate to our

reference timestamp, we first find the closest timestamp in

IMU data and laser scans. Then, we obtain the data at that

timestamp and associate the data with our reference

timestamp.

To begin the particle filter, we need to initialize our

particle set. Let’s say, we have N particles, each particle has

its weight and its pose. We initialize the weight of each

particle by 𝛼0|0 = 1/𝑁 and pose of each particle 𝜇0|0 =

(0,0)𝑇. Here, we arbitrarily set each particle to the origin of

our grid map because we know nothing about our

environment. Therefore, we can choose whatever place as

our initial state. And we set the weight to 1/N uniformly

because we don’t know anything of the environment.

To initialize the map, we will use the first laser scan to

update our occupancy grid map. To transfer the laser scans

to our world coordinate, we use this equation

𝑅𝑇(𝑚 − 𝑝) = [

rcos(𝛼) cos(𝜖)

rsin(𝛼) cos(𝜖)

𝑟sin(𝜖)
] (13)

where r is range, 𝛼 is the azimuth, 𝜖 is the elevation, 𝑅 is

the orientation from lidar frame to world frame, 𝑝 is the

transition from the lidar frame to the world frame, and 𝑚 is

the points in the world frame. Then we transfer 𝑚 to our

grid map and use the bresenham2D algorithm [1] to obtain

the occupied grids and free grids. Finally, we can update the

log-odds of our occupancy grid map using the equation (5).

B. Mapping and Localizaion

As we said before, we divide the mapping and localization
problem into two parts: prediction step and update step. We
iteratively apply these two steps to optimize our estimation of
the robot pose and the environment map.

During the prediction step, we predict the state/pose

𝜇𝑡+1|𝑡
(𝑘) (𝑘 = 1,… , 𝑁) for every particle using the differential-

drive motion model with the reading of IMU and encoder as
we stated in equation (8). In order to obtain a better estimation,
we can add 2D Gaussian noise to our prediction.

During the update step, we transform the scan 𝑧𝑡+1 to the
world frame using the equation (12) with the current particle

pose 𝜇𝑡+1|𝑡
(𝑘)

 for k = 1,..,N. Then, we update the particle weights

using the laser correlation model we described in (9), (10), and
(11). Because the observation model is proportional to the
correlation of the laser scans, so we can simplify the
observation model by

𝑝ℎ (𝑧𝑡+1|𝜇𝑡+1|𝑡
(𝑗)

, 𝑚) ∝ exp(𝑐𝑜𝑟𝑟(𝑦,𝑚))

To obtain the better performance of particle filter, we can
resample our particle set when 𝑁𝑒𝑓𝑓 ≤ 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

is some threshold value and 𝑁𝑒𝑓𝑓 = 1/∑ 𝛼𝑡|𝑡
(𝑗)2𝑁

𝑗=1 . In our

case, we are going to use the stratified resampling method
which is described in Figure 2.

Figure 2

After the update step, we should update the map. We

choose the best particle (the particle with the largest weight)

and transform the laser scans to the grid map using the pose

of the best particle as we described in equation (5).

Therefore, the whole process is described as below.

Particle SLAM Algorithm

for t in timestamps:

 for all p in particle set:

 predict:

move the particle according to the motion

model and input 𝑢

update:

given the laser scan, compute the map

correlation and update the weight

 choose the best particle and update the map log-odds

 if 𝑁𝑒𝑓𝑓 ≤ 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 :

 resample the particle

 Finally, we will use the RBG data 𝐼𝑡 and depth 𝐷𝑡 to
texturize the map. First, we have to transform 𝐼𝑡 and depth 𝐷𝑡
to the world frame. To do that, we need first obtain the
coordinates in the camera frame corresponding to each pixel
in image and then, transfer the coordinates from the camera
frame to world frame using the robot’s pose at time t. In this
case, we have the image coordinates and we want the
coordinates in world frame, which is the inverse transform

using the equation we described in (12). Then, we can find the
ground plane in the transformed coordinates by thresholding
on the height. After this, we can color the map grids using the
RGB data of the pixels that belong to the ground.

IV. RESULT

For my implementation, I add Gaussian noise

𝜖~𝒩(0,0.001) in prediction step, and I have tried using

particle filter with 20 particles and 100 particles. The

runtime of our particle SLAM algorithm increases

significantly when we add more particles. For 20 particles,

the runtime for an episode is about 15 minutes. For 100

particles, it takes about an hour to complete an episode.

However, performance wise, the improvement is nor

significant. Therefore, when running on the test dataset, I

only use 20 particles.

One other thing to mention is the noise. If we want to

have better localization performance, we should add the

noise with large deviation, because we want to spread the

particles more to explore more possibility. However, when it

comes to mapping, large noise would significantly affects

our update step. We might have bad mapping because the

output of the motion model becomes insignificant and the

pose of the particle largely depends on the additive noise.

Therefore, when we want to do the mapping and localization

simultaneously, we have to carefully choose the deviation of

the additive noise.

When doing the texture mapping, it is important to have

a good deterministic method to find the pixels that belong to

the ground. In my implementation, I just finetuned the

thresholding value for heights of the world coordinates.

However, it is time consuming and not very deterministic. It

might be significantly affected by the noise. For example, if

there is a hill or if the robot is trembling, the results would

be unreliable.

Below are the results of my particle filter SLAM on 3

different datasets.

Images of dataset 20

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 3, 4, 5, 6, 7 represents the result of particle filter

SLAM of dataset 20. Each picture shows how the

occupancy grid map looks like over after timestamps. White

grids in map represent the free grids, black grids represent

the occupied grids, and gray grids indicates the grids are

unexplored. The blue line indicates the robot trajectory.

Images of dataset 21

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 8, 9, 10, 11, 12 represents the result of particle

filter SLAM of dataset 21. Each picture shows how the

occupancy grid map looks like after 1000 timestamps.

White grids in map represent the free grids, black grids

represent the occupied grids, and gray grids indicates the

grids are unexplored. The blue line indicates the robot

trajectory.

Images of dataset 23

Figure 13

Figure 14

Figure 15

Figure 16

Figure 13, 14, 15, 16 represents the result of particle

filter SLAM of dataset 21. Each picture shows how the

occupancy grid map looks like after 1000 timestamps.

White grids in map represent the free grids, black grids

represent the occupied grids, and gray grids indicates the

grids are unexplored. The blue line indicates the robot

trajectory.

Images of texture map

Figure 17

Figure 18

Figure 17 represents the resulting texture map of dataset

20. Figure 18 represents the resulting texture map of dataset

21. The result looks not quite good and I am guessing that is

because of the way we determine the ground points is not

robust. Although this need some finetune process, it is

extremely difficult to get a good threshold value because

each episode takes more than an hour to complete.

CONCLUSION

 In this project, we are trying to localize the robot and
mapping the environment using the particle filter. After
obtaining the poses of robot, with the provided RBGD data,
we can color/texturize the map using the RGB value belong to
the ground. However, our texture map is not smooth. To create
better texture map, we might want to explore more robust and
advanced technique to texturize the map.

REFERENCES

[1] Paul E. Black. Dictionary of Algorithms and Data Structures, NIST.
https://xlinux.nist.gov/dads/HTML/bresenham.html

	I. Introduction
	II. Problem Formulation
	A. Structure of Robotics Problem
	B. Mapping
	C. Prediction
	D. Update
	E. Projection Function

	III. Technical Approach
	A. Initialization and Data Synchronization
	B. Mapping and Localizaion

	IV. Result
	Conclusion
	References

