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Abstract—This paper presented my work of using particle 

filter to implement SLAM Algorithm. Our goal is to use the 

given LIDAR, IMU, and encoder data to localize our robot and 

create the map simultaneously. In our implementation, we will 

use the laser observation model and differential-drive motion 

model and use particle filter to predict and update. Then we will 

use RGBD data to create the texture map. 
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I. INTRODUCTION  

Simultaneous localization and mapping (SLAM) is a 
fundamental and important problem in robotic mapping and 
navigation. It is the computational problem of constructing or 
updating a map of an unknown environment while 
simultaneously keeping track of an agent's location within it. 
Its applications including self-driving cars, unmanned aerial 
vehicles, and autonomous underwater vehicles. 

Nowadays, there are several popular algorithms known for 
solving or providing approximate solution for the SLAM 
problem. For example, Particle filter, Kalman filter, and 
GraphSLAM. Particle filters comprise a broad family of 
sequential Monte Carlo algorithms for approximate inference 
in partially observable Markov chain. Using the particle filter, 
we are able to solve the localization problem and estimate the 
robot’s pose. In this paper, we are going to focus on the math 
of the particle filter and its implementation on predicting the 
pose and localizing the robot using the given data. 
Specifically, we are going to use the IMU, odometry, and laser 
measurements to localize the robot and build a 2-D occupancy 
grid map of the environment. 

Our approach of solving the SLAM problem can be 
divided into two major parts, prediction and update. We treat 
each particle as one of our potential robots. In prediction step, 
we are going to use the differential-drive model to predict the 
motion of each particle. In the update step, we are going to use 
the laser scan from each particle and use the laser observation 
model to compute map correlation. Then we choose the 
particle has the best map correlation, project the laser scan, 
and update the map. Finally we can use the RBGD data to 
texturize the map. 

II. PROBLEM FORMULATION 

A. Structure of Robotics Problem 

In robotics problem, we are generally interested in these 

parameters: time 𝑡, robot state 𝑥𝑡, control input 𝑢𝑡 , 
observation 𝑧𝑡, environment state 𝑚𝑡. Usually, the sequence 

of control inputs and observations are assumed known, and 

we are interested in estimating the robot states and 

environment states. Under the Markov Assumptions, the 

state 𝑥𝑡+1 only depends on the previous input 𝑢𝑡 and state 𝑥𝑡, 

and the observation 𝑧𝑡 only depends on the robot state 𝑥𝑡 and 

the environment state 𝑚𝑡. 

 
Figure 1 

Figure 1is the Markov Chain which representing the 

relationship between the parameters. 

Under Markov Assumption, we can decompose the joint 

probability density function of state 𝑥0:𝑡, observation 𝑧0:𝑡, 
and controls 𝑢0:𝑡−1 as below 

𝑝(𝑥0:𝑇 , 𝑧0:𝑇 , 𝑢0:𝑇−1) = 𝑝0|0(𝑥0)∏𝑝ℎ(𝑧𝑡|𝑥𝑡)

𝑇

𝑡=0

∏𝑝𝑓(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1)

𝑇

𝑡=0

   (1) 

where 𝑝0|0(𝑥0) is prior, 𝑝ℎ(𝑧𝑡|𝑥𝑡) is observation model, and 

𝑝𝑓(𝑥𝑡|𝑥𝑡−1, 𝑢𝑡−1) is motion model. We will discuss these 

models and how to use them to predict and update the 

probability of robot states for our particle filter later. 

B. Mapping 

In our case, we don’t have the ground truth map 
beforehand. So, one way to approximate the map of the 
environment is to do the lidar-based mapping. Given the robot 
trajectory 𝑥0:𝑡 and a sequence of lidar scans 𝑧0:𝑡, we are going 
to build an occupancy grid map 𝑚 of the environment. 

𝑚𝑖|𝑧0:𝑡 = {
1 (𝑜𝑐𝑐𝑢𝑝𝑖𝑒𝑑), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 𝛾𝑖,𝑡

0 (𝑓𝑟𝑒𝑒), 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏. 1 − 𝛾𝑖,𝑡  
   (2) 

Where 𝑚𝑖  is the 𝑖 th cell of our map 𝑚  and 𝛾𝑖,𝑡  is the 

occupancy probability of 𝑖th cell in time 𝑡. 

𝛾𝑖,𝑡: = 𝑝(𝑚𝑖 = 1|𝑧0,𝑡 , 𝑥0,𝑡)                          (3) 

 For a binary random variable 𝑚𝑖 , maintaining the 
probability density function is equivalent to maintain the log-
odds 𝜆𝑖,𝑡 of each cell, since  

𝛾𝑖,𝑡 =  1 −
1

1 + exp(𝜆𝑖,𝑡)
                           (4) 

where 𝜆𝑖,𝑡 can be obtained by  

𝜆𝑖,𝑡 = 𝜆𝑖,𝑡−1 + 𝑙𝑜𝑔𝑔ℎ(𝑧𝑡|𝑚𝑖 , 𝑥𝑡)                  (5) 



Here, 𝑔ℎ(𝑧𝑡|𝑚𝑖 , 𝑥𝑡) is our believes relating to the observation 
model. To simply the model, we choose it to be 4 if it is 
occupied and ¼ if it is free. 

C. Prediction 

For particle filter, the prior 𝑝𝑡|𝑡(𝑥) at time t is defined by 

                      𝑝𝑡|𝑡(𝑥) =∑𝛼𝑡|𝑡
(𝑘)𝛿(𝑥𝑡; 𝜇𝑡|𝑡

(𝑘)
)

𝑁

𝑘=1

                    (6) 

where 𝑁 is the number of particles, 𝛼𝑡|𝑡
(𝑘)

 is the weight of 𝑘th 

particle at time t and 𝜇𝑡|𝑡
(𝑘)
∈ 𝑆𝐸(2) is the pose (state) of the 

𝑘th particle at time t. 

Given a new control input 𝑢𝑡  and current state 𝑥𝑡 , the 
predicted probability density function of particle filter can be 
represented as 

𝑝𝑡+1|𝑡(𝑥) ≈ ∑𝛼𝑡+1|𝑡
(𝑘) 𝛿(𝑥; 𝜇𝑡+1|𝑡

(𝑘)
)

𝑁

𝑘=1

              (7) 

Here, 𝛼𝑡+1|𝑡
(𝑘)

 is the weight of the 𝑘th particle at time t+1, and 

in our case, this should be the same as the weight in time t. 

𝜇𝑡+1|𝑡
(𝑘)

 is the predicted pose of the 𝑘th particle, and it can be 

obtained using the motion model. In our case, we are using the 
differential-drive motion model. Then for each particle, its 
estimated pose can be described as 

𝜇𝑡+1|𝑡 = 𝑓(𝜇𝑡|𝑡 , 𝑢𝑡)                                  

              = 𝜇𝑡|𝑡 + 𝜏

(

 
 
𝑣𝑡𝑠𝑖𝑛𝑐 (

𝑤𝑡𝜏

2
) cos (𝜃𝑡 +

𝑤𝑡𝜏

2
)

𝑣𝑡𝑠𝑖𝑛𝑐 (
𝑤𝑡𝜏

2
)sin (𝜃𝑡 +

𝑤𝑡𝜏

2
)

𝑤𝑡 )

 
 
         (8) 

Here, 𝜏 is the time difference, 𝜃𝑡 ∈ (−𝜋, 𝜋] is the yaw angle 
at time t. 𝑤𝑡 ∈ ℝ is the rotational velocity (yaw rate), which 
can be obtained by IMU. 𝑣𝑡 ∈ ℝ is the linear velocity at time 
t, which can be obtained by encoder. 

D. Update 

For particle filter, given a new observation 𝑧𝑡+1, we can 

update the probability density function of particle filter at 

time t+1 based on the observation model as  

𝑝𝑡+1|𝑡+1(𝑥) =∑[
𝛼𝑡+1|𝑡
(𝑘) 𝑝ℎ(𝑧𝑡+1|𝜇𝑡+1|𝑡

(𝑘) )

∑ 𝛼𝑡+1|𝑡
(𝑗) 𝑝ℎ(𝑧𝑡+1|𝜇𝑡+1|𝑡

(𝑗) )𝑁
𝑗=1

]

𝑁

𝑘=1

𝛿(𝑥; 𝜇𝑡+1|𝑡
(𝑘) )         (9) 

Here, 𝑝ℎ is our observation model. In our case, we are going 
to use Laser Correlation model as our observation model. The 
Laser Correlation model is defined as  

𝑝ℎ(z|𝑥,𝑚) =
exp(𝑐𝑜𝑟𝑟(𝑦,𝑚))

∑ exp(𝑐𝑜𝑟𝑟(𝑣,𝑚))𝑣

               (10) 

where 𝑦 is our observation (laser data) transformed into grid 
map, and 𝑚 is our grid map. The correlation function 𝑐𝑜𝑟𝑟 is 
defined as  

𝑐𝑜𝑟𝑟(𝑦,𝑚) =∑1

𝑖

{𝑚𝑖 = 𝑦𝑖}                   (11) 

So, our observation model is proportional to the correlation 
of the laser scan and grid map at time t. 

E. Projection Function 

 Given a point 𝑥 ∈ ℝ3  in world frame, we can find the 
corresponding point 𝑦 ∈ ℝ2  using the following projection 
function. 

𝑦 = 𝐾𝜋(𝑅𝑜𝑐𝑅𝑐𝑤
𝑇 (𝑥 − 𝑝))                        (12) 

Here, 𝐾 ∈ ℝ3∗3 is an intrinsic parameter matrix, 𝑅𝑜𝑐  is the 

rotation from camera frame to optical frame, 𝑅𝑐𝑤 ∈ 𝑆𝑂(3) 
is the rotation from world frame to camera frame, 𝑝 is the 

transition from world origin to camera position, and 𝜋 is 

defined as 𝜋(𝑎) =
1

𝑎3
𝑎 for a vector 𝑎 ∈ ℝ3. 

III. TECHNICAL APPROACH 

A. Initialization and Data Synchronization 

Our data set consists laser scans, IMU, and encoder data, 

but they are from different sensors, so they have different 

timestamps. In order to use these data, we need to find 

associate data for each timestamp. To simplify, we are going 

to use the timestamp of the encoder data as our reference. 

To find the IMU data and laser scans associate to our 

reference timestamp, we first find the closest timestamp in 

IMU data and laser scans. Then, we obtain the data at that 

timestamp and associate the data with our reference 

timestamp.  

To begin the particle filter, we need to initialize our 

particle set. Let’s say, we have N particles, each particle has 

its weight and its pose. We initialize the weight of each 

particle by 𝛼0|0 = 1/𝑁 and pose of each particle 𝜇0|0 =

(0,0)𝑇. Here, we arbitrarily set each particle to the origin of 

our grid map because we know nothing about our 

environment. Therefore, we can choose whatever place as 

our initial state. And we set the weight to 1/N uniformly 

because we don’t know anything of the environment. 

To initialize the map, we will use the first laser scan to 

update our occupancy grid map. To transfer the laser scans 

to our world coordinate, we use this equation 

𝑅𝑇(𝑚 − 𝑝) = [

rcos(𝛼) cos(𝜖)

rsin(𝛼) cos(𝜖)

𝑟sin(𝜖)
]                 (13) 

where r is range, 𝛼 is the azimuth, 𝜖 is the elevation, 𝑅 is 

the orientation from lidar frame to world frame, 𝑝 is the 

transition from the lidar frame to the world frame, and 𝑚 is 

the points in the world frame. Then we transfer 𝑚 to our 

grid map and use the bresenham2D algorithm [1] to obtain 

the occupied grids and free grids. Finally, we can update the 

log-odds of our occupancy grid map using the equation (5). 

B. Mapping and Localizaion 

As we said before, we divide the mapping and localization 
problem into two parts: prediction step and update step. We 
iteratively apply these two steps to optimize our estimation of 
the robot pose and the environment map.  

During the prediction step, we predict the state/pose 

𝜇𝑡+1|𝑡
(𝑘) (𝑘 = 1,… , 𝑁) for every particle using the differential-

drive motion model with the reading of IMU and encoder as 
we stated in equation (8). In order to obtain a better estimation, 
we can add 2D Gaussian noise to our prediction. 

During the update step, we transform the scan 𝑧𝑡+1 to the 
world frame using the equation (12) with the current particle 



pose 𝜇𝑡+1|𝑡
(𝑘)

 for k = 1,..,N. Then, we update the particle weights 

using the laser correlation model we described in (9), (10), and 
(11). Because the observation model is proportional to the 
correlation of the laser scans, so we can simplify the 
observation model by 

𝑝ℎ (𝑧𝑡+1|𝜇𝑡+1|𝑡
(𝑗)

, 𝑚) ∝ exp(𝑐𝑜𝑟𝑟(𝑦,𝑚)) 

To obtain the better performance of particle filter, we can 
resample our particle set when 𝑁𝑒𝑓𝑓 ≤ 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 . 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

is some threshold value and 𝑁𝑒𝑓𝑓 = 1/∑ 𝛼𝑡|𝑡
(𝑗)2𝑁

𝑗=1 . In our 

case, we are going to use the stratified resampling method 
which is described in Figure 2. 

 

Figure 2 

After the update step, we should update the map. We 

choose the best particle (the particle with the largest weight) 

and transform the laser scans to the grid map using the pose 

of the best particle as we described in equation (5). 

Therefore, the whole process is described as below.

 
Particle SLAM Algorithm 

 
for t in timestamps: 

 for all p in particle set: 

  predict: 

move the particle according to the motion 

model and input 𝑢 

update: 

given the laser scan, compute the map 

correlation and update the weight 

 choose the best particle and update the map log-odds 

 if 𝑁𝑒𝑓𝑓 ≤ 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 : 

  resample the particle  

 
  

 Finally, we will use the RBG data 𝐼𝑡  and depth 𝐷𝑡  to 
texturize the map. First, we have to transform 𝐼𝑡 and depth 𝐷𝑡 
to the world frame. To do that, we need first obtain the 
coordinates in the camera frame corresponding to each pixel 
in image and then, transfer the coordinates from the camera 
frame to world frame using the robot’s pose at time t. In this 
case, we have the image coordinates and we want the 
coordinates in world frame, which is the inverse transform 

using the equation we described in (12). Then, we can find the 
ground plane in the transformed coordinates by thresholding 
on the height. After this, we can color the map grids using the 
RGB data of the pixels that belong to the ground. 

IV. RESULT 

For my implementation, I add Gaussian noise 

𝜖~𝒩(0,0.001) in prediction step, and I have tried using 

particle filter with 20 particles and 100 particles. The 

runtime of our particle SLAM algorithm increases 

significantly when we add more particles. For 20 particles, 

the runtime for an episode is about 15 minutes. For 100 

particles, it takes about an hour to complete an episode. 

However, performance wise, the improvement is nor 

significant. Therefore, when running on the test dataset, I 

only use 20 particles.  

One other thing to mention is the noise. If we want to 

have better localization performance, we should add the 

noise with large deviation, because we want to spread the 

particles more to explore more possibility. However, when it 

comes to mapping, large noise would significantly affects 

our update step. We might have bad mapping because the 

output of the motion model becomes insignificant and the 

pose of the particle largely depends on the additive noise. 

Therefore, when we want to do the mapping and localization 

simultaneously, we have to carefully choose the deviation of 

the additive noise. 

When doing the texture mapping, it is important to have 

a good deterministic method to find the pixels that belong to 

the ground. In my implementation, I just finetuned the 

thresholding value for heights of the world coordinates. 

However, it is time consuming and not very deterministic. It 

might be significantly affected by the noise. For example, if 

there is a hill or if the robot is trembling, the results would 

be unreliable. 

Below are the results of my particle filter SLAM on 3 

different datasets. 

 

Images of dataset 20 

 

 
Figure 3 



 
Figure 4 

 

 
Figure 5 

 
Figure 6 

 

 

Figure 7 

Figure 3, 4, 5, 6, 7 represents the result of particle filter 

SLAM of dataset 20. Each picture shows how the 

occupancy grid map looks like over after timestamps. White 

grids in map represent the free grids, black grids represent 

the occupied grids, and gray grids indicates the grids are 

unexplored. The blue line indicates the robot trajectory. 

 

 

 

 

 

 

 

 

 

 



Images of dataset 21 

 

 
Figure 8 

 

 
Figure 9 

 

 

 
Figure 10 

 

 
Figure 11 



 

 
Figure 12 

Figure 8, 9, 10, 11, 12 represents the result of particle 

filter SLAM of dataset 21. Each picture shows how the 

occupancy grid map looks like after 1000 timestamps. 

White grids in map represent the free grids, black grids 

represent the occupied grids, and gray grids indicates the 

grids are unexplored. The blue line indicates the robot 

trajectory. 

 

Images of dataset 23 

 

 
Figure 13 

 

 

 
Figure 14 

 

 
Figure 15 

 



 
Figure 16 

Figure 13, 14, 15, 16 represents the result of particle 

filter SLAM of dataset 21. Each picture shows how the 

occupancy grid map looks like after 1000 timestamps. 

White grids in map represent the free grids, black grids 

represent the occupied grids, and gray grids indicates the 

grids are unexplored. The blue line indicates the robot 

trajectory. 

 

Images of texture map 

 

 
Figure 17 

 
Figure 18 

Figure 17 represents the resulting texture map of dataset 

20. Figure 18 represents the resulting texture map of dataset 

21. The result looks not quite good and I am guessing that is 

because of the way we determine the ground points is not 

robust. Although this need some finetune process, it is 

extremely difficult to get a good threshold value because 

each episode takes more than an hour to complete. 

CONCLUSION 

 In this project, we are trying to localize the robot and 
mapping the environment using the particle filter. After 
obtaining the poses of robot, with the provided RBGD data, 
we can color/texturize the map using the RGB value belong to 
the ground. However, our texture map is not smooth. To create 
better texture map, we might want to explore more robust and 
advanced technique to texturize the map. 
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