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Abstract—This paper presented my work of implement the 

visual-inertial SLAM using extended Kalman filter to 

implement. Our goal is to use the given IMU measurements and 

the features extracted from the stereo cameras to localize our 

robot and update the feature map simultaneously. In our 

implementation, we will perform IMU localization via EKF 

prediction and landmark mapping via EKF update. Then we 

will combine those and IMU update to obtain the complete 

visual-inertial SLAM algorithm.  
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I. INTRODUCTION  

Simultaneous localization and mapping (SLAM) is a 
fundamental and important problem in robotic mapping and 
navigation. It is the computational problem of constructing or 
updating a map of an unknown environment while 
simultaneously keeping track of an agent's location within it. 
Its applications including self-driving cars, unmanned aerial 
vehicles, and autonomous underwater vehicles. 

Nowadays, there are several popular algorithms known for 
solving or providing approximate solution for the SLAM 
problem. For example, Particle filter, Kalman filter, and 
GraphSLAM. The Kalman filter is introduced by R. E. 
Kalman between 1959 and 1961 [1][2][3]. The EKF is the 
nonlinear version of the Kalman filter which linearizes about 
an estimate of the current mean and covariance. Using the 
EKF, we are able to solve the localization and mapping 
problem in the case of well-defined transition model. In this 
paper, we are going to focus on implementing the visual-
inertial SLAM using EKF prediction and EFK update. 
Specifically, we are going to use the IMU measurements to 
predict the agent’s pose and use the landmarks to localize the 
agent. 

Our approach of solving the SLAM problem can be 
divided into two major parts, prediction and update. In 
prediction step, we are going to implement the EKF prediction 
step based on the 𝑆𝐸(3) kinematics to estimate the pose 𝑇𝑡 ∈
𝑆𝐸(3) of the IMU over time t. In the update step, we are going 
to implement EKF with the unknown landmark positions 𝑚 ∈
ℝ3∗𝑀 as a state and perform EKF update after every visual 
observation 𝑧𝑡  in order to keep track of the mean and 
covariance of 𝑚 . Finally, we implement complete visual-
inertial SLAM by performing the IMU prediction step and 
IMU update step with the landmark update step to obtain the 
more accurate estimation of robot’s pose over time. 

II. PROBLEM FORMULATION 

A. Locolization Problem 

Our data set consists synchronized measurements from an 
IMU 𝐷𝑢 = {𝑢1, 𝑢2, … , 𝑢𝑁}. Here, 𝑁 is the number of different 
timestamps, 𝑢𝑡 ∈ ℝ6  which includes the measurements of 
linear velocity 𝑣𝑡 ∈ ℝ3 and rotational velocity 𝜔𝑡 ∈ ℝ3. We 
also have the features extracted from a stereo camera 𝐷𝑧 =
{𝑧1,1, 𝑧2,1, … , 𝑧𝑀,𝑁} . Here, 𝑁  is the number of different 

timestamps, 𝑀 is the number of different features, 𝑧𝑖,𝑡 ∈ ℝ4 

which consists the image coordinates of the stereo camera.  

We also have some assumptions that are made: the 
transformation 𝑇𝑐𝑖 ∈ 𝑆𝐸(3)  from the IMU to the camera 
optical frame (extrinsic parameters) and the stereo camera 
calibration matrix 𝑀  (intrinsic parameters) are known; the 
homogeneous coordinates 𝑚𝑖 ∈ ℝ4 in the world frame of the 
landmarks are known; the data association 𝜋𝑖 : {1, … , 𝑀} →
{1, … , 𝑁} stipulating which landmarks were observed at each 
time 𝑡 is known or provided by an external algorithm. 

Giving all these data and assumptions, we want to estimate 
the agent’s position 𝑇𝑡 ∈ 𝑆𝐸(3)  with respect to the world 
frame over time. 

B. Landmarks Mapping Problem 

The data we have here is the same as we described above 
and the data association assumption also hold. We have other 
assumptions are made: the agent’s pose 𝑇𝑡 ∈ 𝑆𝐸(3) over time 
is known; the landmarks are static. 

Giving all these data and assumptions, we want to estimate 
the world-frame coordinates of the landmarks 𝑚𝑖 ∈ ℝ4, 𝑖 =
1, 2, … , 𝑀. 

C. Visual-Inertial SLAM Problem 

Provided the data as we described above and the data 
association assumption still hold, we want to simultaneously 
localize the agent by estimating the agent’s pose 𝑇𝑡 ∈ 𝑆𝐸(3) 
over time and mapping the landmarks 𝑚𝑖 ∈ ℝ4 to the world-
coordinates frame.  

III. TECHNICAL APPROACH 

A. Extended Kalman Filter 

In general, a nonlinear Kalman filter is a Bayes filter that 

has these characteristics: the prior pdf 𝑝0|−1 is Gaussian; the 

motion model is nonlinear in the state and affected by 

Gaussian noise; the observation model is nonlinear in the state 

and affected by Gaussian noise; the process noise 𝑤𝑡  and 

measurement noise 𝑣𝑡 are independent of each other, of the 

state 𝑥𝑡  and across time; the posterior pdf is forced to be 



Gaussian via approximation. Given these, a nonlinear Kalman 

filter can be represent as the prior 

𝑥𝑡  | 𝑧0:𝑡 , 𝑢0:𝑡−1 ~ 𝑁( 𝜇𝑡|𝑡 , ∑𝑡|𝑡)                     (1) 

 

with the motion model  

𝑥𝑡+1 =  𝑓(𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡)                               (2) 

 

and the observation model 

𝑧𝑡 = ℎ(𝑥𝑡 , 𝑣𝑡)                                      (3) 

 

where 𝑧𝑡  is the observation at time 𝑡 , 𝑢𝑡  is the IMU 

measurements at time 𝑡, 𝑁( 𝜇𝑡|𝑡 , ∑𝑡|𝑡)  indicates the Gaussian 

distribution with mean 𝜇𝑡|𝑡 and covariance ∑𝑡|𝑡. 

The extended Kalman filter is a specific Kalman filter that 

uses a first-order Taylor series approximation to the motion 

and observation models. Therefore, the motion model can be 

written as: 

 

𝑓(𝑥𝑡 , 𝑢𝑡 , 𝑤𝑡) ≈ 𝑓(𝜇𝑡|𝑡 , 𝑢𝑡 , 0) + 𝐹𝑡(𝑥𝑡 − 𝜇𝑡|𝑡) + 𝑄𝑡𝑤𝑡   (4) 

 

where 𝐹𝑡 ≔
𝑑𝑓

𝑑𝑥
(𝜇𝑡|𝑡 , 𝑢𝑡 , 0) and 𝑄𝑡 ≔

𝑑𝑓

𝑑𝑤
(𝜇𝑡|𝑡 , 𝑢𝑡 , 0). And the 

observation model can be written as: 

 

        ℎ(𝑥𝑡+1, 𝑣𝑡+1) ≈ ℎ(𝜇𝑡+1|𝑡 , 0) + 𝐻𝑡+1(𝑥𝑡+1 − 𝜇𝑡+1|𝑡)

+ 𝑅𝑡+1𝑣𝑡+1                                                  (5) 

 

where 𝐻𝑡+1 ≔
𝑑ℎ

𝑑𝑥
(𝜇𝑡+1|𝑡 , 0) and 𝑅𝑡+1 ≔

𝑑ℎ

𝑑𝑣
(𝜇𝑡+1|𝑡 , 0). And 

then, we can represent the mean and covariance of the 

prediction step as: 

 

𝜇𝑡+1|𝑡 = 𝑓(𝜇𝑡|𝑡 , 𝑢𝑡 , 0)                               (6) 

∑𝑡+1|𝑡 = 𝐹𝑡∑𝑡|𝑡𝐹𝑡
𝑇 + 𝑄𝑡𝑊𝑄𝑡

𝑇                        (7) 

 

where 𝑊 is the covariance of the process noise 𝑤𝑡. For the 

update step, we can update the mean and covariance as: 

 

𝜇𝑡+1|𝑡+1 = 𝜇𝑡+1|𝑡 + 𝐾𝑡+1|𝑡 (𝑧𝑡+1 − ℎ(𝜇𝑡+1|𝑡 , 0))   (8) 

∑𝑡+1|𝑡+1 = (𝐼 − 𝐾𝑡+1|𝑡𝐻𝑡+1)∑𝑡+1|𝑡              (9) 

 

In this equation, 𝐾 is the Kalman gain, and can be represented 

as: 

𝐾𝑡+1|𝑡: = ∑𝑡+1|𝑡𝐻𝑡+1
𝑇 (𝐻𝑡+1∑𝑡+1|𝑡𝐻𝑡+1

𝑇 + 𝑅𝑡+1𝑉𝑅𝑡+1
𝑇 )−1(10) 

 

where 𝑉 is the covariance of the measurement noise 𝑣𝑡.  

Given the homogeneous coordinate of a landmark 𝑚. The 
observation model with the measurement noise 𝑣𝑡~𝑁(0, 𝑉) is 
defined as 

𝑧𝑡 = 𝑀𝜋(𝑇𝑖𝑇𝑡𝑚) + 𝑣𝑡                           (11) 

Here, 𝑧𝑡  is the observation a time t, 𝑀 is the stereo camera 
calibration matrix, 𝑇𝑖 is the transformation matrix from IMU 
frame to optical frame, and 𝜋 is the operator defined as  

𝜋(𝑞) ≔
1

𝑞3

𝑞                                  (12) 

Given the IMU pose 𝑇𝑡 . The motion model with time 
discretization τ and noise 𝑤𝑡~𝑁(0, 𝑊) is represented as 

𝑇𝑡+1 = exp(𝜏(−𝑢𝑡 + 𝑤𝑡)̂ ) 𝑇𝑡                   (13) 

Here, 𝑇𝑡+1 is the IMU pose at time t+1, the hat map is defined 
in Lie Algebra of 𝑆𝐸(3) and the IMU measurements 𝑢𝑡  is 
defined as 

𝑢𝑡 ≔ [
𝜈𝑡

𝜔𝑡
]                                   (14) 

𝜈𝑡  is the linear velocity and 𝜔𝑡  is the angular velocity that 
obtain from the IMU. 

 Given the prediction and update rules of EKF in 
(6)(7)(8)(9) and the specified motion model and observation 
model in (11), (13). We are interested how to implement the 
visual-inertial SLAM by associating the motion and 
observation model with the EFK. 

 Our data set consists synchronized measurements from an 
IMU and a stereo camera as well as the intrinsic camera 
calibration and the extrinsic calibration between the two 
sensors, and the transformation from the IMU to the left 
camera frame. Giving all this data, we want to implement the 
visual-inertial SLAM to estimate the agent’s position, which 
is equivalent to obtain the pose of the IMU 𝑇𝑡 ∈ 𝑆𝐸(3) with 
respect to the world frame over time, and the world-frame 
coordinates of the landmarks 𝑚𝑖 ∈ ℝ4. 

We can divide this SLAM problem into 3 parts. First, we 

perform the dead reckoning to estimate the IMU pose over 

time. Second, we can use the estimated pose to update and 

map the observed landmarks on the world-coordinates frame. 

Finally, we combine the IMU prediction step and IMU update 

step with landmarks update step to form a complete visual-

inertial SLAM algorithm and obtain the estimate IMU pose.  

B. IMU Localization via EKF Prediction 

The EKF prediction can be considered as a localization-
only problem. We want to predict the agent’s position in the 
world frame over time. In our case, this is the same as 
estimating the inverse IMU pose 𝑇𝑡 ∈ 𝑆𝐸(3) over time, given 
the IMU measurements {𝑢𝑡}𝑡=0

𝑇  and the visual feature 
observations {𝑧𝑡}𝑡=0

𝑇 . 

In EKF implementation, the IMU pose has the prior 
𝑇𝑡  | 𝑧0:𝑡 , 𝑢0:𝑡−1 ~ 𝑁( 𝜇𝑡|𝑡 , ∑𝑡|𝑡)  where 𝜇𝑡|𝑡 ∈ 𝑆𝐸(3)  and 

∑𝑡|𝑡 ∈ ℝ6∗6. The motion model with time discretization τ and 

noise 𝑤𝑡~𝑁(0, 𝑊) is specified in (13). 

With this motion model, we can re-write the updated mean 
and covariance, specified in (6) and (7), in terms of nominal 
kinematics of the mean of 𝑇𝑡  and zero-mean perturbation 
kinematics: 

𝜇𝑡+1|𝑡 = exp (−𝜏𝑢�̂�)𝜇𝑡|𝑡                   (15) 

 

In here, 𝑢�̂� ∈ 𝑠𝑒(3) is the hat map defined in the Lie Algebra: 

𝑢�̂� = [
𝜔�̂� 𝜈𝑡

0 0
]                                    (16) 

and the covariance is  

∑𝑡+1|𝑡 = exp(−𝜏(𝑢𝑡)⋏) ∑𝑡|𝑡 exp(−𝜏(𝑢𝑡)⋏)𝑇 + 𝜏2𝑊 (17) 

 

In here, (𝑢𝑡)⋏ ∈ ℝ6∗6 and it is defined as 

(𝑢𝑡)⋏ = [
𝜔�̂� 𝜈�̂�

0 𝜔�̂�
]                                   (18) 



C. Landmark Mapping via EKF Update 

Visual mapping is a mapping only problem. Assuming we 
know the agent’s pose in the world frame, which is the inverse 
IMU pose in our case, we want to estimate the homogeneous 
coordinates 𝑚 ∈ ℝ4  in the world frame of the landmarks, 
given the visual feature observations {𝑧𝑡}𝑡=0

𝑇 , which is the 
coordinates in the image plane of the stereo camera. 

The homogeneous coordinate of a landmark has the prior 
𝑚 | 𝑧0:𝑡  ~ 𝑁( 𝜇𝑡 , ∑𝑡)  where 𝜇𝑡 ∈ ℝ4  and ∑𝑡 ∈ ℝ3∗3 . The 
observation model with the measurement noise 𝑣𝑡~𝑁(0, 𝑉) is 
specified in (11). 

 With this observation model, we can rewrite the equation 
for updating the mean and covariance for EKF update step, as 
specified in (8) and (9): 

𝜇𝑡+1 = 𝜇𝑡 + 𝐷𝐾𝑡(𝑧𝑡 − 𝑧�̂�)                (19) 

 

∑𝑡+1 = (𝐼 − 𝐾𝑡𝐻𝑡)∑𝑡                     (20) 

 

where 𝑧𝑡 is the new observation at time 𝑡, 𝑧�̂� is the predicted 

observation based on 𝜇𝑡  and it is computed using the 

observation model specified in (11). D is a dilation matrix, 𝐾𝑡 

is the Kalman gain and it is computed as 

 

𝐾𝑡 = ∑𝑡𝐻𝑡
𝑇(𝐻𝑡∑𝑡𝐻𝑡

𝑇 + 𝐼⨂𝑉)−1            (21) 

 

and 𝐻𝑡 is the Jacobian of 𝑧�̂� with respect to 𝑚 evaluated at 𝜇𝑡, 

which is derived as 

𝐻𝑡 = 𝑀
𝑑𝜋

𝑑𝑞
(𝑇𝑖𝑇𝑡𝜇𝑡)𝑇𝑖𝑇𝑡𝐷                      (22) 

D. IMU Update via EKF Update 

For this EKF update, the variable of interest is the inverse 

IMU pose 𝑇𝑡+1 ∈ 𝑆𝐸(3) instead of the landmark positions 

𝑚 ∈ ℝ4. 

Again, the IMU pose has the prior similar to the 

prediction step 𝑇𝑡+1 | 𝑧0:𝑡 , 𝑢0:𝑡  ~ 𝑁( 𝜇𝑡+1|𝑡 , ∑𝑡+1|𝑡)  where 

𝜇𝑡+1|𝑡 ∈ 𝑆𝐸(3) and ∑𝑡+1|𝑡 ∈ ℝ6∗6. The observation model is 

the same as we used in the visual mapping step, which is 

defined in (11). The difference is that, at this time we need 

the observation model Jacobian 𝐻𝑡+1|𝑡 ∈ ℝ4∗6 with respect to 

the inverse IMU pose and evaluated at 𝜇𝑡+1|𝑡. This Jacobian 

is derived as  

𝐻𝑡+1|𝑡 = 𝑀
𝑑𝜋

𝑑𝑞
(𝑇𝑖𝜇𝑡+1|𝑡𝑚)𝑇𝑖(𝜇𝑡+1|𝑡𝑚)⨀      (23) 

where 𝑚  is the landmark positions in world frame and ⨀ 

operator is defined as 

[
𝑠
𝜆

]⨀ = [
𝜆𝐼 −�̂�
0 0

]                             (24) 

 

Giving these, we can derivate the equation of mean and 

covariance for EKF update step: 

 

𝜇𝑡+1|𝑡+1 = exp ((𝐾𝑡+1|𝑡(𝑧𝑡+1 − 𝑧𝑡+1̂ ))∧)𝜇𝑡+1|𝑡    (25) 

 

∑𝑡+1|𝑡+1 = (𝐼 − 𝐾𝑡+1|𝑡𝐻𝑡+1|𝑡)∑𝑡+1|𝑡         (26) 

 

In (25), the hat map is defined in (16),  𝑧𝑡+1  is the new 

observation, 𝑧𝑡+1̂  is the predicted observation based on 𝜇𝑡+1|𝑡 

and it is computed using the observation model specified in 

(11). And the Kalman gain 𝐾𝑡+1|𝑡 is derived as 

 

𝐾𝑡+1|𝑡 = ∑𝑡+1|𝑡𝐻𝑡+1|𝑡
𝑇 (𝐻𝑡+1|𝑡∑𝑡+1|𝑡𝐻𝑡+1|𝑡

𝑇 + 𝐼⨂𝑉)−1(27) 

 

E. Pipeline of visual-inertial SLAM 

We first want to have a very rough estimation of the IMU 

pose by performing the dead reckoning using only the IMU 

measurements, which is the linear velocity 𝜈𝑡 and the angular 

velocity 𝜔𝑡. 

Given the measurements at time t, we can write them as a 

twist 𝑢𝑡 ∈ ℝ6, which is described in (14). Then we predict 

the new pose with the new mean using the equation (15) and 

the new covariance using the equation (17) and the Gaussian 

noise 𝑤𝑡~𝑁(0, 𝑊). 

After running the process over the given time period, we 

should have the IMU pose for each time in the episode. To 

obtain the trajectory of the agent, we just need to invert the 

IMU pose as the IMU pose is the same as the transformation 

from world frame to IMU frame. 

Then, we want to map the observations of the landmarks 

to the world-coordinates frame and update the landmarks 

position. For example, given an observation 𝑧𝑡, we can map 

it to world coordinates frame by inversing the observation 

model, and update the mean of the landmark position using 

(19) and the covariance of the landmark position using (20). 

After running the process through all landmarks over the 

given time period, we should have a set of updated 

landmarks’ position in the world-coordinates frame. 

Finally, we want to combine the IMU prediction step and 

IMU update step with landmarks update step to obtain a more 

accurate estimation of the IMU pose over time. Given the 

measurements at time t, we first predict the IMU pose as what 

we did in EKF predict. Then we obtain a new observation of 

a landmark 𝑧𝑡. We map it to the world-coordinates frame and 

update the landmark position as what we did in visual 

mapping. And also, we update the mean and covariance of 

the IMU pose using equations (25) and (26) for the updated 

landmark position of the new observation. 

After running the process over the timestamps of the 

given dataset, we should obtain a more accurate IMU pose 

over time and the trajectory of the agent.  

IV. RESULT 

From my implementation of the visual-inertial SLAM 

algorithm, the estimation results can be affected by the 

additive Gaussian noise 𝑣𝑡 and 𝑤𝑡. From the experiment, 

larger covariance of observation noise produces the better 

results, which makes sense because the observation is noisy. 

If we less believe the observations, the trajectory is less 

affected by the observations. 

We have 3 different datasets. Here, I will present the 

results of dead reckoning, landmarks mapping and visual-

inertial SLAM. 

A. Dataset 0042 

 



 
Figure 1 

 

  

  
Figure 2 

 

  

  

Figure 3 

     Figure 1 is the result of only running the EKF prediction. 

Figure 2 is the results of only running the EKF update for 

landmarks mapping. Green dots represent the initial 

landmarks positions and blue dots represent the updated 

landmarks positions. Figure 3 is the results of the visual-

inertial SLAM algorithm. Blue dots represent the mapped 

landmarks position and the red line shows the agent’s 

trajectory. For each plot on the Figure 2 and 3, different 

Gaussian noise 𝑣𝑡~𝑁(0, 𝑉) is added, where 𝑉 = 𝑠𝐼 ∈ ℝ4∗4. 

For the top left one s = 0.01, for the top right one s = 0.1, for 

the bottom left one s = 1, for the bottom right one s = 10. 

 

B. Dataset 0027 

 

 

 
Figure 4 

 

 

  

  
Figure 5 



 

  

  
Figure 6 

Figure 4 is the result of only running the EKF prediction. 

Figure 5 is the results of only running the EKF update for 

landmarks mapping. Green dots represent the initial 

landmarks positions and blue dots represent the updated 

landmarks positions. Figure 6 is the results of the visual-

inertial SLAM algorithm. Blue dots represent the mapped 

landmarks position and the red line shows the agent’s 

trajectory. For each plot on the Figure 5 and 6, different 

Gaussian noise 𝑣𝑡~𝑁(0, 𝑉) is added, where 𝑉 = 𝑠𝐼 ∈ ℝ4∗4. 

For the top left one s = 0.01, for the top right one s = 0.1, for 

the bottom left one s = 1, for the bottom right one s = 10. 

C. Dataset 0020 

 

 
Figure 7 

 

  

  
Figure 8 

 

 

  

  
Figure 9 

     Figure 7 is the result of only running the EKF prediction. 

Figure 8 is the results of only running the EKF update for 

landmarks mapping. Green dots represent the initial 

landmarks positions and blue dots represent the updated 

landmarks positions. Figure 9 is the results of the visual-

inertial SLAM algorithm. Blue dots represent the mapped 

landmarks position and the red line shows the agent’s 

trajectory. For each plot on the Figure 8 and 9, different 

Gaussian noise 𝑣𝑡~𝑁(0, 𝑉) is added, where 𝑉 = 𝑠𝐼 ∈ ℝ4∗4. 

For the top left one s = 0.01, for the top right one s = 0.1, for 

the bottom left one s = 1, for the bottom right one s = 10. 

CONCLUSION 

 In this experiment, we are trying to localize the agent and 
mapping the landmarks in the world-coordinates frame using 
the visual-inertial SLAM algorithm. We solve the predict only 
problem using EFK prediction, and we solve the mapping only 
problem using EKF update. Finally, we solve the visual-



inertial SLAM problem using both EFK prediction step and 
update step. From the experiment, we can see that only using 
the IMU measurements can give us a pretty good estimation, 
and the performance of the SLAM is pretty good but can be 
affected by the additive noise. The EKF is a first order 
linearization of the Kalman filter. It linearizes about an 
estimate of the current mean and covariance, and it works well 
in the case of well-defined transition models. However, in 
practice, most systems are nonlinear. Therefore, more 
complicated filter might be considered when dealing with the 
nonlinear systems. 
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