

Solve the Deterministic Shortest Path Problem using

Dynamic Programming

Jingpei Lu

Jacobs School of Engineering

University of California, San Diego

jil360@ucsd.edu

I. PROBLEM FORMULATION

A. Deterministic Shortest Path (DSP) Problem

Consider a graph with a finite vertex space 𝒱 and a
weighted edge space

𝐶 ≔ {(𝑖, 𝑗, 𝑐𝑖𝑗) ∈ 𝒱 × 𝒱 × ℝ ∪ {∞}} (1)

where 𝑐𝑖𝑗 denotes the arc length or cost from vertex 𝑖 to vertex

𝑗. A path from a start node 𝑠 ∈ 𝒱 to an end node 𝜏 ∈ 𝒱 can be
represented by an ordered list 𝑄 ≔ (𝑖1, 𝑖2, … , 𝑖𝑞) of nodes

𝑖𝑘 ∈ 𝒱. The length of the path can be represented as

𝐽𝑄 = ∑ 𝑐𝑡,𝑡+1

𝑞−1

𝑡=1

 (2)

Our objective is to find the shortest path

𝑄∗ = argmin
𝑄∈ℚ

𝐽𝑄 (3)

that has the smallest length from a start node 𝑠 ∈ 𝒱 to an end
node 𝜏 ∈ 𝒱.

B. Formulate the DSP Problem as a Markov Decision

Process (MDP)

 To model this problem as a Markov Decision Process, we
should clearly define the states space 𝒳, control spaces 𝒰, the
initial state 𝑥𝑜 , the motion model 𝑝𝑓(∙ |𝑥𝑡 , 𝑢𝑡), the planning

horizon 𝑇, the stage cost 𝑙(𝑥𝑡 , 𝑢𝑡) and terminal costs 𝑞(𝑥𝑇).
One way to define the Markov Decision Process is to use the
vertex space 𝒱 as our state space 𝒳, and the arc length 𝑐 to be
our cost from one state to another. So, we can define the MDP
as

• The state is 𝑥𝑡 ∈ 𝒳 ≔ {𝑖 ∈ 𝒱}, where 𝒱 is a set of
vertexes on the graph.

• The control is 𝑢𝑡 = 𝑥𝑡+1 for 𝑢𝑡 ∈ 𝒰 ,which is the
movement of going from one vertex to another
connected vertex.

• The initial state 𝑥𝑜 can be defined as the start node 𝑠
and the terminal state 𝑥𝑇 is the end node 𝜏.

• The planning horizon 𝑇 is |𝒱| − 1 where |𝒱| is the
number of nodes in the graph.

• Since the graph is deterministic, so our motion model
𝑝𝑓(𝑥𝑡+1|𝑥𝑡 , 𝑢𝑡) should either be 1 or 0 depends on

which control we choose to go with.

• The stage costs are the arc lengths between two
vertexes. For example, if we are moving from 𝑥𝑡 = 𝑖
to 𝑥𝑡+1 = 𝑗, then 𝑙(𝑥𝑡 , 𝑥𝑡+1) = 𝑐𝑖𝑗 ∈ ℝ ∪ {∞}.

• The terminal cost 𝑞(𝑥𝑇) = 0.

Therefore, finding the optimal policy

𝜋∗ = argmin
𝜋∈Π

𝑉𝜋(𝑥𝑜) (4)

is equivalent to find the shortest path in the DSP problem as
described in equation (3), where a policy 𝜋 is equivalent to a
path 𝑄 and the value function 𝑉𝜋 is equivalent to the length of
the path 𝐽𝑄.

II. TECHNICAL APPROACH

Our dataset contains the number of nodes in the graph 𝑛 =
|𝒱|, the start node 𝑠, the goal node 𝜏, and a matrix 𝐶 ∈ ℝ𝑛×𝑛

specifying the cost 𝑐𝑖𝑗 of transitioning from node 𝑖 to node 𝑗.

If a transition is not possible, 𝑐𝑖𝑗 = ∞. We also have a strong

assumption that there are no negative cycles in the graph and

𝑐𝑖𝑖 = 0 for all 𝑖 ∈ 𝒱 .

A. Label Correcting Algorithm

The label correcting (LC) algorithm is a general algorithm

for Shortest Path (SP) problems that does not necessarily visit

every node of the graph. The LC algorithm prioritizes the

visited nodes using the cost-to-arrive values. It introduces a

concept of label 𝑔𝑖 that keeps (an estimate of) the lowest cost

from start node 𝑠 to each visited node 𝑖 ∈ 𝒱. Each time 𝑔𝑖 is

reduced, the labels 𝑔𝑗 of the children of 𝑖 can be corrected as

𝑔𝑗 = 𝑔𝑖 + 𝑐𝑖𝑗 (5)

The LC algorithm also introduces a concept of OPEN list

which stores a set of nodes that can potentially be part of the

shortest path to 𝜏. The implementation of the algorithm is

demonstrated in the figure below.

Figure 1

We start with the start node 𝑠. We set 𝑔𝑠 = 0 and 𝑔𝑖 = ∞

for all 𝑖 ∈ 𝒱\{𝑠} and put 𝑠 into the OPEN list. Every time we

remove a node 𝑖 from the OPEN list, we check two

conditions of all its children as described in the Figure 1. If a

node satisfied these two conditions, we insert this node to the

OPEN list. We iterate this process until the OPEN list is

empty.

The pseudocode implementation for the LC algorithm is

described on the figure below.

Figure 2

If there exists at least one finite cost path from 𝑠 to 𝜏, then

the Labe Correcting (LC) algorithm terminates with 𝑔𝜏 equal

to the shortest path from 𝑠 to 𝜏. Otherwise, the LC algorithm

terminates with 𝑔𝜏 = ∞.

The optimal g-value satisfy the equation.

𝑔𝑖 = min
𝑗∈Parent(i)

𝑔𝑗 + 𝑐𝑗𝑖 (6)

Therefore, once the g-value is available, the least cost

path 𝑄∗ = 𝑞0, 𝑞1, … , 𝑞𝜏 is greedy path computed starting

from 𝑞𝑇 = 𝜏 and back tracking using

𝑞𝑖 = min
𝑗∈Parent(𝑞𝑡+1)

𝑔𝑗 + 𝑐𝑗,𝑞𝑡+1
 (7)

for 𝑡 = 𝑇 − 1, … , 0 .

III. RESULT

The LC algorithm can output different shortest paths

depending on the implementation of the OPEN list. For my

implementation, I implemented the OPEN list as a stack. I

ran my implementation on six given datasets and obtained

the results as below.

Dataset 1

Figure 3

Minimum cost path: 42 -> 43 -> 44 -> 53 -> 61 -> 70 -> 79

-> 80 -> 81 -> 82 -> 83 -> 84 -> 85 -> 86 -> 87 -> 98 -> 109

Optimal cost-to-go values: 0.00 -> 1.00 -> 2.00 -> 3.00 ->

4.00 -> 5.00 -> 6.00 -> 7.00 -> 8.00 -> 9.00 -> 10.00 -> 11.00

-> 12.00 -> 13.00 -> 14.00 -> 15.00 -> 16.00

Dataset 2

Figure 4

Minimum cost path: 20 -> 31 -> 42 -> 53 -> 64 -> 75 -> 86

-> 97 -> 108 -> 109 -> 120

Optimal cost-to-go values: 0.00 -> 16.00 -> 32.00 -> 46.00 -

> 55.00 -> 61.00 -> 64.00 -> 66.00 -> 66.00 -> 67.00 -> 67.00

Dataset 3

Figure 5

Minimum cost path: 2 -> 5 -> 9 -> 13 -> 18 -> 23

Optimal cost-to-go values: 0.00 -> 1.00 -> 2.00 -> 3.00 ->

4.00 -> 6.00

42

43

44

53

61

70

79

82

83

84

85

86

87

80

81

98

109

20

31

42

53

109

64

108

120

75

86

97

5

2

9

13

18

23

Dataset 4

Figure 6

Minimum cost path: 11 -> 22 -> 33 -> 44 -> 55 -> 66 -> 67 -

> 68 -> 69 -> 70 -> 71 -> 72 -> 83 -> 84 -> 85 -> 96 -> 97 -

> 108 -> 109 -> 120

Optimal cost-to-go values: 0.00 -> 3.00 -> 6.00 -> 10.00 ->

14.00 -> 18.00 -> 24.00 -> 32.00 -> 41.00 -> 50.00 -> 58.00

-> 64.00 -> 70.00 -> 74.00 -> 77.00 -> 79.00 -> 80.00 ->

81.00 -> 82.00 -> 82.00

Dataset 5

Figure 7

Minimum cost path: 0 -> 11 -> 22 -> 23 -> 24 -> 25 -> 26 ->

27 -> 28 -> 29 -> 30 -> 31 -> 32 -> 41 -> 50 -> 58 -> 67 ->

76 -> 87 -> 98 -> 109

Optimal cost-to-go values: 0.00 -> 2.00 -> 5.00 -> 7.00 ->

9.00 -> 11.00 -> 13.00 -> 15.00 -> 17.00 -> 19.00 -> 21.00 -

> 23.00 -> 25.00 -> 27.00 -> 29.00 -> 31.00 -> 33.00 -> 35.00

-> 37.00 -> 39.00 -> 41.00

Dataset 6

Figure 8

Minimum cost path: 27 -> 38 -> 37 -> 45 -> 46 -> 109 -> 120

-> 119 -> 118

Optimal cost-to-go values: 0.00 -> 4.00 -> 16.00 -> 22.00 ->

29.00 -> 41.00 -> 42.00 -> 42.00 -> 43.00

11

22

33

44

55

66

67

68

69

70

71

72

83

84

85

96

97

108

109

120

0

11

22

23

24

25

26

27

28

29

30

31

32

41

50

58

67

76

87

98

109

27

37

38

45

46

109

120

119

118

	I. Problem Formulation
	A. Deterministic Shortest Path (DSP) Problem
	B. Formulate the DSP Problem as a Markov Decision Process (MDP)

	II. Technical Approach
	A. Label Correcting Algorithm

	III. Result

