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I. PROBLEM FORMULATION 

A. Deterministic Shortest Path (DSP) Problem 

Consider a graph with a finite vertex space 𝒱  and a 
weighted edge space 

𝐶 ≔ {(𝑖, 𝑗, 𝑐𝑖𝑗) ∈ 𝒱 × 𝒱 × ℝ ∪ {∞}}            (1) 

where 𝑐𝑖𝑗 denotes the arc length or cost from vertex 𝑖 to vertex 

𝑗. A path from a start node 𝑠 ∈ 𝒱 to an end node 𝜏 ∈ 𝒱 can be 
represented by an ordered list 𝑄 ≔ (𝑖1, 𝑖2, … , 𝑖𝑞)  of nodes 

𝑖𝑘 ∈ 𝒱. The length of the path can be represented as  

𝐽𝑄 = ∑ 𝑐𝑡,𝑡+1

𝑞−1

𝑡=1

                                   (2) 

Our objective is to find the shortest path 

𝑄∗ = argmin
𝑄∈ℚ

𝐽𝑄                                   (3) 

that has the smallest length from a start node 𝑠 ∈ 𝒱 to an end 
node 𝜏 ∈ 𝒱. 

B. Formulate the DSP Problem as a Markov Decision 

Process (MDP) 

 To model this problem as a Markov Decision Process, we 
should clearly define the states space 𝒳, control spaces 𝒰, the 
initial state 𝑥𝑜 , the motion model 𝑝𝑓(∙ |𝑥𝑡 , 𝑢𝑡), the planning 

horizon 𝑇, the stage cost 𝑙(𝑥𝑡 , 𝑢𝑡) and terminal costs 𝑞(𝑥𝑇). 
One way to define the Markov Decision Process is to use the 
vertex space 𝒱 as our state space 𝒳, and the arc length 𝑐 to be 
our cost from one state to another. So, we can define the MDP 
as 

• The state is 𝑥𝑡 ∈ 𝒳 ≔ {𝑖 ∈ 𝒱}, where 𝒱 is a set of 
vertexes on the graph. 

• The control is 𝑢𝑡 = 𝑥𝑡+1  for 𝑢𝑡 ∈ 𝒰  ,which is the 
movement of going from one vertex to another 
connected vertex.  

• The initial state 𝑥𝑜 can be defined as the start node 𝑠 
and the terminal state 𝑥𝑇 is the end node 𝜏.  

• The planning horizon 𝑇 is |𝒱| − 1 where |𝒱| is the 
number of nodes in the graph.  

• Since the graph is deterministic, so our motion model 
𝑝𝑓(𝑥𝑡+1|𝑥𝑡 , 𝑢𝑡) should either be 1 or 0 depends on 

which control we choose to go with.  

• The stage costs are the arc lengths between two 
vertexes. For example, if we are moving from 𝑥𝑡 = 𝑖 
to 𝑥𝑡+1 = 𝑗, then 𝑙(𝑥𝑡 , 𝑥𝑡+1) = 𝑐𝑖𝑗 ∈ ℝ ∪ {∞}.  

• The terminal cost 𝑞(𝑥𝑇) = 0.  

Therefore, finding the optimal policy  

𝜋∗ = argmin
𝜋∈Π

𝑉𝜋(𝑥𝑜)                            (4) 

is equivalent to find the shortest path in the DSP problem as 
described in equation (3), where a policy 𝜋 is equivalent to a 
path 𝑄 and the value function 𝑉𝜋 is equivalent to the length of 
the path 𝐽𝑄. 

II. TECHNICAL APPROACH 

Our dataset contains the number of nodes in the graph 𝑛 =
|𝒱|, the start node 𝑠, the goal node 𝜏, and a matrix 𝐶 ∈ ℝ𝑛×𝑛 

specifying the cost 𝑐𝑖𝑗 of transitioning from node 𝑖 to node 𝑗. 

If a transition is not possible, 𝑐𝑖𝑗 = ∞. We also have a strong 

assumption that there are no negative cycles in the graph and 

𝑐𝑖𝑖 = 0 for all 𝑖 ∈ 𝒱 . 

A. Label Correcting Algorithm 

The label correcting (LC) algorithm is a general algorithm 

for Shortest Path (SP) problems that does not necessarily visit 

every node of the graph. The LC algorithm prioritizes the 

visited nodes using the cost-to-arrive values. It introduces a 

concept of label 𝑔𝑖  that keeps (an estimate of) the lowest cost 

from start node 𝑠 to each visited node 𝑖 ∈ 𝒱. Each time 𝑔𝑖  is 

reduced, the labels 𝑔𝑗 of the children of 𝑖 can be corrected as 

𝑔𝑗 = 𝑔𝑖 + 𝑐𝑖𝑗                                     (5) 

The LC algorithm also introduces a concept of OPEN list 

which stores a set of nodes that can potentially be part of the 

shortest path to 𝜏. The implementation of the algorithm is 

demonstrated in the figure below. 

 
Figure 1 

We start with the start node 𝑠. We set 𝑔𝑠 = 0 and 𝑔𝑖 = ∞ 

for all 𝑖 ∈ 𝒱\{𝑠} and put 𝑠 into the OPEN list. Every time we 

remove a node 𝑖  from the OPEN list, we check two 

conditions of all its children as described in the Figure 1. If a 

node satisfied these two conditions, we insert this node to the 

OPEN list. We iterate this process until the OPEN list is 

empty.  



The pseudocode implementation for the LC algorithm is 

described on the figure below.

 
Figure 2 

If there exists at least one finite cost path from 𝑠 to 𝜏, then 

the Labe Correcting (LC) algorithm terminates with 𝑔𝜏 equal 

to the shortest path from 𝑠 to 𝜏. Otherwise, the LC algorithm 

terminates with 𝑔𝜏 = ∞. 

The optimal g-value satisfy the equation.  

𝑔𝑖 = min
𝑗∈Parent(i)

𝑔𝑗 + 𝑐𝑗𝑖                              (6) 

Therefore, once the g-value is available, the least cost 

path 𝑄∗ = 𝑞0, 𝑞1, … , 𝑞𝜏  is greedy path computed starting 

from  𝑞𝑇 = 𝜏 and back tracking using  

𝑞𝑖 = min
𝑗∈Parent(𝑞𝑡+1)

𝑔𝑗 + 𝑐𝑗,𝑞𝑡+1
                   (7) 

for 𝑡 = 𝑇 − 1, … , 0 . 

III. RESULT 

The LC algorithm can output different shortest paths 

depending on the implementation of the OPEN list. For my 

implementation, I implemented the OPEN list as a stack. I 

ran my implementation on six given datasets and obtained 

the results as below. 

Dataset 1 

 

 
Figure 3 

Minimum cost path: 42 -> 43 -> 44 -> 53 -> 61 -> 70 -> 79   

-> 80 -> 81 -> 82 -> 83 -> 84 -> 85 -> 86 -> 87 -> 98 -> 109 

Optimal cost-to-go values:  0.00 -> 1.00 -> 2.00 -> 3.00 -> 

4.00 -> 5.00 -> 6.00 -> 7.00 -> 8.00 -> 9.00 -> 10.00 -> 11.00 

-> 12.00 -> 13.00 -> 14.00 -> 15.00 -> 16.00 

Dataset 2 

 

 
Figure 4 

Minimum cost path: 20 -> 31 -> 42 -> 53 -> 64 -> 75 -> 86   

-> 97 -> 108 -> 109 -> 120 

Optimal cost-to-go values:  0.00 -> 16.00 -> 32.00 -> 46.00 -

> 55.00 -> 61.00 -> 64.00 -> 66.00 -> 66.00 -> 67.00 -> 67.00 

Dataset 3 

 
Figure 5 

Minimum cost path: 2 -> 5 -> 9 -> 13 -> 18 -> 23 

Optimal cost-to-go values:  0.00 -> 1.00 -> 2.00 -> 3.00 -> 

4.00 -> 6.00 
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Dataset 4 

 

 
Figure 6 

Minimum cost path: 11 -> 22 -> 33 -> 44 -> 55 -> 66 -> 67 -

> 68 -> 69 -> 70 -> 71 -> 72 -> 83 -> 84 -> 85 -> 96 -> 97 -

> 108 -> 109 -> 120 

Optimal cost-to-go values: 0.00 -> 3.00 -> 6.00 -> 10.00 -> 

14.00 -> 18.00 -> 24.00 -> 32.00 -> 41.00 -> 50.00 -> 58.00 

-> 64.00 -> 70.00 -> 74.00 -> 77.00 -> 79.00 -> 80.00 -> 

81.00 -> 82.00 -> 82.00 

Dataset 5 

 
Figure 7 

Minimum cost path: 0 -> 11 -> 22 -> 23 -> 24 -> 25 -> 26 -> 

27 -> 28 -> 29 -> 30 -> 31 -> 32 -> 41 -> 50 -> 58 -> 67 -> 

76 -> 87 -> 98 -> 109 

Optimal cost-to-go values: 0.00 -> 2.00 -> 5.00 -> 7.00 -> 

9.00 -> 11.00 -> 13.00 -> 15.00 -> 17.00 -> 19.00 -> 21.00 -

> 23.00 -> 25.00 -> 27.00 -> 29.00 -> 31.00 -> 33.00 -> 35.00 

-> 37.00 -> 39.00 -> 41.00 

Dataset 6 

 
Figure 8 

Minimum cost path: 27 -> 38 -> 37 -> 45 -> 46 -> 109 -> 120 

-> 119 -> 118 

Optimal cost-to-go values: 0.00 -> 4.00 -> 16.00 -> 22.00 -> 

29.00 -> 41.00 -> 42.00 -> 42.00 -> 43.00 
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