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I. PROBLEM FORMULATION 

A. Optimization Problem for Rock-Paper-Scissors (RPS) 

Game 

Imaging we are challenge your friend to a 100-game match 
of rock-paper-scissors, and our goal is to find a strategy that 
can win as many games as possible. Assume Our opponent’s 
move is randomize but still biased towards one of the three 
options. He plays his preferred move 50% of the time and each 
of the other two options, 25% of the time. For each game, we 
can have the score {−1, 0, +1} depending on the result. The 
score is +1 for winner, -1 for loser and 0 for draw. Our goal is 
to maximize our cumulative score 𝑠 by predicting opponent’s 
preference of rock, paper and scissor at time 𝑡. 

B. Formulate the RPS Problem as a Markov Decision 

Process (MDP) 

 To model this problem as a Markov Decision Process, we 
should clearly define the states space 𝒳, control spaces 𝒰, the 
initial state 𝑥𝑜, the transition model 𝜓(𝑥𝑡 , 𝑢𝑡 , 𝑧𝑡), the planning 
horizon 𝑇 , the stage reward 𝑙(𝑥𝑡 , 𝑢𝑡) and terminal rewards 
𝑞(𝑥𝑇). We can define the MDP as below. 

• The state space is 𝑥𝑡 ∈ 𝒳 ≔ {𝑃𝑟𝑡 × 𝑆𝐷},  which is 
the cartesian product between the opponent’s 
preference at time 𝑡 and the score difference (SD). 
The score difference is defined as  

𝑆𝐷 = 𝑦𝑜𝑢𝑟 𝑠𝑐𝑜𝑟𝑒 − 𝑜𝑝𝑝𝑛𝑒𝑛𝑡′𝑠 𝑠𝑐𝑜𝑟𝑒 

Since the opponent’s preference cannot be directly 
observed, we should convert this state space 𝒳 into 
a believe space ℬ in order to formulate it as an MDP. 
Then, our state is 𝑥𝑡 ∈ ℬ ≔ {𝑏𝑡 ∈ [0,1]3 ×
𝑆𝐷|1𝑇𝑏𝑡 = 1} , where 𝑏𝑡 = [𝑃𝑟𝑟 , 𝑃𝑟𝑝, 𝑃𝑟𝑠]  is the 

opponent’s preference of rock, paper and scissor at 
time 𝑡. 

• The control is 𝑢𝑡 ∈ 𝒰 ≔ {𝑅𝑡 , 𝑃𝑡 , 𝑆𝑡}  ,which is our 
move at time 𝑡.  

• The initial state 𝑥𝑜 is {𝑏0, 𝑆𝐷}, where 𝑏0 = [
1

3
,

1

3
,

1

3
], 

SD = 0. 

• The planning horizon is 𝑇 = 100.  

• The transition model is 𝑏𝑡+1 = 𝜓(𝑏𝑡 , 𝑢𝑡 , 𝑧𝑡), where 
𝑧𝑡 ∈ {𝑅𝑡 , 𝑃𝑡 , 𝑆𝑡}  is the observation of opponent’s 
move at time 𝑡, and the model will be described later. 

• The stage reward is 𝑙(𝑥𝑡 , 𝑢𝑡) = {−1, 0, +1} , 
depending on result of the game at time 𝑡. It is +1 if 
we win, -1 if we lose, 0 if draw. 

• The terminal reward 𝑞(𝑥𝑇) is the same as the stage 
reward at time 𝑡 = 𝑇.  

After we have this set up of MDP, our problem becomes how 
to obtain the optimal policy  

𝜋∗ = argmax
𝜋∈Π

𝑉𝑇
𝜋(𝑥𝑇) 

that maximize our reward in the planning horizon 𝑇 . The 
value function is defined as 

𝑉𝑡
𝜋(𝑥𝑡) = max {𝑙(𝑥𝑡 , 𝑢𝑡) + 𝑉𝑡−1

𝜋 (𝑥𝑡−1)} 

II. TECHNICAL APPROACH 

To solve this problem, we will use Forward Dynamic 

Programming Algorithm to find the optimal strategy by 

estimating the opponent’s preference. As we described, we 

will use transition model to update the belief state. Since in 

this problem, our control 𝑢𝑡 doesn’t affect our believe state, 

so we can simply the model as 

𝑏𝑡+1 = 𝜓(𝑏𝑡, 𝑧𝑡) 

where 𝑏𝑡+2 ∈ [0,1]3, and 

𝑏𝑡+1[0] = 𝑃𝑟(𝑅𝑜𝑐𝑘|𝑏𝑡 , 𝑧𝑡) 

𝑏𝑡+1[1] = 𝑃𝑟(𝑃𝑎𝑝𝑒𝑟|𝑏𝑡, 𝑧𝑡) 

𝑏𝑡+1[2] = 𝑃𝑟(𝑆𝑐𝑖𝑠𝑠𝑜𝑟|𝑏𝑡 , 𝑧𝑡) 

We then can update them as 

𝑃𝑟(𝑥|𝑏𝑡 , 𝑧𝑡) ~ 
𝑃𝑟 (𝑥|𝑧𝑡)Pr(𝑏𝑡|𝑥, 𝑧𝑡)

Pr (𝑏𝑡|𝑧𝑡)
 

For example, if we want to update 𝑏𝑡+1[0], then 

 

𝑃𝑟(𝑅𝑜𝑐𝑘|𝑏𝑡 , 𝑧𝑡) ~ 
𝑃𝑟 (𝑅𝑜𝑐𝑘|𝑧𝑡)Pr(𝑏𝑡|𝑅𝑜𝑐𝑘, 𝑧𝑡)

Pr (𝑏𝑡|𝑧𝑡)
 

In this equation, 𝑃𝑟 (𝑅𝑜𝑐𝑘|𝑧𝑡) is the preference of Rock 

given the single observation at time 𝑡. We know our opponent 

move his preferred move 50% of the time, so we can define 

this as  𝑃𝑟 (𝑅𝑜𝑐𝑘|𝑧𝑡 = 𝑅𝑜𝑐𝑘) =
1

2
, and 

𝑃𝑟 (𝑅𝑜𝑐𝑘|𝑧𝑡 = 𝑃𝑎𝑝𝑒𝑟) =
1

4
, 𝑃𝑟 (𝑅𝑜𝑐𝑘|𝑧𝑡 = 𝑆𝑐𝑖𝑠𝑠𝑜𝑟) =

1

4
. 

Pr(𝑏𝑡|𝑅𝑜𝑐𝑘, 𝑧𝑡) is just our belief of opponent’s preference of 

Rock at time 𝑡, which is 𝑏𝑡[0]. The denominator Pr(𝑏𝑡|𝑧𝑡) =
Pr(𝑏𝑡|𝑅𝑜𝑐𝑘, 𝑧𝑡) + Pr(𝑏𝑡|𝑃𝑎𝑝𝑒𝑟, 𝑧𝑡) + Pr(𝑏𝑡|𝑆𝑐𝑖𝑠𝑠𝑜𝑟, 𝑧𝑡)  is 

always 1. After we have 𝑃𝑟(𝑅𝑜𝑐𝑘|𝑏𝑡 , 𝑧𝑡), 𝑃𝑟(𝑃𝑎𝑝𝑒𝑟|𝑏𝑡 , 𝑧𝑡), 

and 𝑃𝑟(𝑆𝑐𝑖𝑠𝑠𝑜𝑟|𝑏𝑡 , 𝑧𝑡), we should normalize them so that 

1𝑇𝑏𝑡+1 = 1 still hold. 

A. Forward Dynamic Programming Algorithm 

For each game, we can obtain the optimal action based 

on our belief at time 𝑡. Then, we can update our belief state 

using the transition model as we specified above and update 

the score differential based on the result of the game. The 



implementation of the algorithm is described as below.

 

III. RESULT 

In our simulation, we played 50 100-game matches with 

the randomly generated opponent’s move. The opponent’s 

moves consist 50% of his/her preferred move, and 25% of 

each other option. We simulated the game using 3 strategies: 

optimal policy, deterministic policy, and stochastic policy. 

Optimal policy is the one we obtained using Forward 

Dynamic Programming. Deterministic policy is iterating 

rock, paper, scissors, rock, paper, scissors, rock, and so on. 

Stochastic policy is choosing among the three options 

uniformly at random for each game.  We plotted the mean 

and standard deviation over 50 100-game matches played by 

the three strategies with the number of games on the x axis, 

and the game score differential on the y axis. 

 

 
Figure 1 

 
Figure 2 

The Figure 1 shows the mean over 50 100-game matches 

played by the three strategies and the Figure 2 shows the 

standard deviation over 50 100-game matches played by the 

three strategies. 

We can see that our optimal strategy outperforms the 

other two strategies. We can reach around 22 score 

differential on average at the end of each 100-game match. 
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