
Page 1 
 

 

Performance Comparison for Different Motion Planning Algorithms on 

3D Environments 

Jingpei Lu JIL360@UCSD.EDU 
Department of Electrical & Computer Engineering 

University of California, San Diego 

1 Introduction  

Motion planning in robotics is to find a sequence of valid configurations that moves the robot from 

the source to destination. For example, consider navigating a robot inside a grocery from a start 

point to the destination without hitting into people and obstacles. We want a motion planning 

algorithm to autonomously computing a valid and shortest path for achieving this goal. Motion 

planning has several robotics applications such as autonomous driving, as well as in other fields 

such as artificial intelligence. 

In our problem, we are interested in the task of moving our agent from the start point to the end 

point in the given 3D environment. Therefore, our objective is to find a shortest and collision free 

path that navigate our agent from the start point to the goal. We are going to use both search-based 

algorithms and sampling-basted algorithms to tackle this problem. Specifically, we are going to 

explore A* algorithm, Learning Real-Time A* (LRTA*) algorithm, Rapidly Exploring Random 

Tree (RRT*) algorithm, and we are going to compare their performance in the different 3D 

environments. 

2 Problem Formulation 

2.1 Problem Setup 

In this problem we have a set of different 3-D environments, and the configuration space 𝐶 is 

described by a rectangular outer boundary and a set of rectangular obstacle blocks. Each rectangle 

is described by a 9 dimensional vector, specifying the coordinates of its lower left corner 

(𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛, 𝑧𝑚𝑖𝑛) ∈ ℜ3 , right corner (𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑎𝑥) ∈ ℜ3 , RGB color (𝑅, 𝐺, 𝐵) ∈ ℜ3 . 

These form our obstacle space 𝐶𝑜𝑏𝑠 , and the free space 𝐶𝑓𝑟𝑒𝑒  can be described as 𝐶𝑓𝑟𝑒𝑒 ≔

{𝐶\𝐶𝑜𝑏𝑠}. We also know the start point 𝑥𝑠 ∈ ℜ3 and the goal coordinates 𝑥𝜏 ∈ ℜ3 for each of the 

available environments. Our objective is to navigate our robot from the start point to the goal point 

with an efficient and collision free path 𝑄 ≔ (𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑇), where 𝑥𝑖 ∈ ℜ3 is a 3D point on 

the path. We also have the constraint that given the current robot position 𝑥𝑡 ∈ ℜ3, our next robot 

move 𝑥𝑡+1 ∈ ℜ3 should satisfy the condition that: 

1. The moving distance should not be greater than 1, i.e., ||𝑥𝑡+1 − 𝑥𝑡  || ≤ 1 

2. The robot remains collision free at 𝑥𝑡+1, i.e. 𝑥𝑡+1 ∈ 𝐶𝑓𝑟𝑒𝑒  

3. The next position 𝑥𝑡+1 is produced within 2 seconds 

4. The robot eventually reaches the goal, i.e. the last position of our path should be 𝑥𝜏 

2.2 Path Planning Problem 

Given the Configuration space 𝐶, the obstacle space 𝐶𝑜𝑏𝑠 , the free space 𝐶𝑓𝑟𝑒𝑒 , and the initial state 

𝑥𝑠 ∈ 𝐶𝑓𝑟𝑒𝑒 , the goal state 𝑥𝜏 ∈ 𝐶𝑓𝑟𝑒𝑒 , we can find a set of paths ℚ𝑠,𝜏 that connect the initial state to 

the goal state. Each path 𝑄 ∈ ℚ𝑠,𝜏 is a continuous function 𝑄: [0,1] → 𝐶. Our objective is to find a 

path that is efficient and collision free. Our optimal path 𝑄 should satisfy the following criteria: 

• It is a feasible path, i.e. 𝑄: [0,1] → 𝐶𝑓𝑟𝑒𝑒  and 𝑄(0) = 𝑥𝑠, 𝑄(1) = 𝑥𝜏 
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• It has the minimum cost, i.e. 𝐽(𝑄∗) = min
𝑄∈ℚ𝑠,𝜏

𝐽(𝑄) 

where the cost function 𝐽(∙) is defined as  

𝐽(𝑄) = ∑ 𝑐𝑡,𝑡+1

𝑇−1

𝑡=0

= ∑ ||𝑥𝑡+1 − 𝑥𝑡  ||

𝑇−1

𝑡=0

                                     (1) 

which is the Euclidean distance between the two positions. 

3 Technical Approach 

3.1 Implementing the A* Algorithm 

The A* algorithm is a search-based algorithm and it is the modification to the Label Correcting 

algorithm. It also uses the concept of label, such that 𝑔𝑖  that keeps (an estimate of) the lowest cost 

from start node 𝑥𝑠 to each visited node 𝑥𝑖 ∈ 𝐶. It also keeps the concept of OPEN list which stores 

a set of nodes that can potentially be part of the shortest path to 𝑥𝜏. However, the OPEN list is now 

implemented as a priority queue and the admission of the OPEN list is strengthened as: 

𝑔𝑖 + 𝑐𝑖𝑗 + ℎ𝑗 < 𝑔𝜏                                                                   (2) 

where ℎ𝑗  is a positive lower bound on the optimal cost to get from node 𝑥𝑗  to 𝑥𝜏 , known as 

heuristic. And 𝑐𝑖𝑗 is the Euclidean distance between 𝑥𝑖 and 𝑥𝑗. Here, we define the heuristic ℎ𝑗 to 

be the distance from the node 𝑗 to the goal as 

ℎ𝑗 = ||𝑥𝑗 − 𝑥𝜏 ||                                                                    (3) 

The problem for A* algorithm is that it can only be used for a known environment with the 

constructed graph, where the children of each node in the graph is known. To adopt the A* 

algorithm in our problem, we have to find a way to obtain the children for each node consistently. 

My approach is that we first discretize the environment to a 3D grid, and the length for each edge 

of small square is 0.5. Then, for each node 𝑥𝑖 = (𝑥, 𝑦, 𝑧) ∈ ℜ3, we define its children to be a set of 

nodes as  

𝑥𝑗 ∈ 𝑋𝑐 ≔ {(𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐)| 𝑥𝑐 ∈ {𝑥 − 0.5, 𝑥, 𝑥 + 0.5}, 𝑦𝑐 ∈ {𝑦 − 0.5, 𝑦, 𝑦 + 0.5}, 

𝑧𝑐 ∈ {𝑧 − 0.5, 𝑧, 𝑧 + 0.5}} \{𝑥𝑖}                                                      (4) 

By doing so, the children for each state are deterministic, and within the distance 1 from the 

parent node to satisfy the condition 1. Then, we can apply the A* algorithm to find the shortest 

path. 

The implementation of the algorithm is shown below: 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Algorithm 1: A* Algorithm 

 

1: OPEN ← {𝑥𝑠}, CLOSED ← {} 

2: 𝑔𝑠 = 0, 𝑔𝑖  = ∞ for all 𝑥𝑖 ∈ 𝐶 \ {𝑥𝑠} 

3: while 𝑥𝜏 ∉ CLOSED do: 

4:  remove 𝑥𝑖 with smallest 𝑓𝑖 ≔ 𝑔𝑖 + ℎ𝑖 from OPEN 

5:  insert 𝑥𝑖 into CLOSED 

6:  for 𝑥𝑗 ∈ Children(𝑥𝑖) and 𝑥𝑗 ∉ CLOSED and Collisionfree(𝑥𝑗 , 𝑥𝑖) do: 

7:  if 𝑔𝑖 > (𝑔𝑗 + 𝑐𝑖𝑗) then: 

8:   𝑔𝑗 ← (𝑔𝑖 + 𝑐𝑖𝑗) 

9:   Parent(𝑥𝑗) ← 𝑥𝑖 

10:   Insert 𝑥𝑗 to OPEN 

 

 

 

 

 
 

Figure 1: The A* algorithm 
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After the termination of the algorithm, we can find the shortest path by iteratively finding the 

parents from the goal 𝑥𝜏 to the start node 𝑥𝑠. 

3.2 Implementing the LRTA* Algorithm 

The LRTA* algorithm is an agent-centric search-based algorithm. The beauty of the agent-centric 

search is that we don’t need to construct the graph or planning the path before the robot can move. 

We can plan path the while the robot is moving and iterate these two steps until arrive the goal. 

Therefore, it can be used on really large environments, where it is impossible to compute the path 

all the way to the goal. 

The key idea of the LRTA* algorithm is that the heuristic needs to be updated over time. For 

each time, the robot repeatedly moves to the most promising adjacent cell 𝑠 ∈ ℜ3 using 

𝑠 = arg min
𝑥𝑗∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑥𝑖)

𝑐𝑠𝑗 + ℎ𝑗                                                      (5) 

And updating a heuristic: 

ℎ𝑠 = min
𝑥𝑗∈𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑠)

𝑐𝑠𝑗 + ℎ𝑗                                                        (6) 

The implementation of the LRTA* algorithm with a lookahead of one node is shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

After the termination of the algorithm, the trajectory of the robots is the path from the start to 

goal. 

3.3 Implementing the RRT* Algorithm 

The RRT* algorithm is a sampling-based algorithm. Although the sampling-based algorithm may 

not be able to find the shortest path, its advantage is that it is efficient when dealing the high-

dimensional planning problem as it is faster and requires less memory than search-based planning 

in many domains. The key idea of the sampling-based algorithm is to construct a roadmap from 

start point to end goal with sampled configurations. To implementing the sampling-based 

algorithm, we first need to define some primitive procedures: 

• Sample: returns independent and identical distributed (iid) samples from 

configuration space C 

• SampleFree: returns iid samples from 𝐶𝑓𝑟𝑒𝑒  

• Nearest: given a graph G = (V, E) with V ⊂ C and a point x ∈ C, returns a vertex v ∈ 

V that is closest to x:  

Nearest((V, E), x) ∶=  arg min
𝑣∈𝑉

||𝑥 − 𝑣|| 

• Near: given a graph G = (V, E) with V ⊂ C, a point x ∈ C, and r > 0, returns the 

vertices in V that are within a distance r from x: 

Algorithm 2: LRTA* Algorithm 

 

1: initialize the heuristic: ℎ ← ℎ0 

2: initialize the current state: 𝑠 ← 𝑥𝑠 

3: while 𝑠 ≠ 𝑥𝜏 do: 

4:  generate children one move away from state 𝑠 

5:  find the state 𝑠′ with the lowest 𝑓𝑗 = 𝑔𝑗 + ℎ𝑗 as in (5) 

6:  update h(s) to f(s′) if f(s′) is greater as in (6) 

7: execute the action to get to 𝑠′ as 𝑠 ← 𝑠′ 
8: end while 

 

 

 

 

 
 

Figure 2 : LRTA* algorithm with a lookahead of one 
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𝑁𝑒𝑎𝑟((𝑉, 𝐸), 𝑥, 𝑟) ≔ {𝑣 ∈ 𝑉 | ‖𝑥 − 𝑣‖ ≤ 𝑟} 

• Steer: given points x, y ∈ C and 𝜖 > 0, returns a point z ∈ C that minimizes ‖𝑧 − 𝑦‖ 

while remaining within 𝜖 from x: 

𝑆𝑡𝑒𝑒𝑟𝜖(𝑥, 𝑦) ≔ argmin
𝑧:‖𝑧−𝑥‖≤𝜖

‖𝑧 − 𝑦‖ 

• CollisionFree: given points x, y ∈ C, returns True if the line segment between x and y 

lies in 𝐶𝑓𝑟𝑒𝑒  and False otherwise 

 

 Instead of constructing a roadmap from every node to every node in configuration space, the 

roadmap of RRT* is a tree constructed from random samples with root 𝑥𝑠. The tree is grown until 

it contains a path to 𝑥𝜏. RRT* are well-suited for single-shot planning between a single pair of 𝑥𝑠 

and 𝑥𝜏. 

 To implementing RRT*, we also need to define two cost function: 

• 𝐶𝑜𝑠𝑡(𝑥) is implemented the same as the label in A* algorithm, such that it keeps (an 

estimate of) the lowest cost from start node 𝑥𝑠 to each visited node 𝑥 

• 𝐶𝑜𝑠𝑡(𝑥𝑖 , 𝑥𝑗)  is the Euclidean distance between two nodes, i.e. 𝐶𝑜𝑠𝑡(𝑥𝑖 , 𝑥𝑗) ≔

‖𝑥𝑖 − 𝑥𝑗‖ 

For my implementation, I set r and 𝜖  to be 1 to ensure the condition 1 is satisfied. The 

implementation of the RRT* algorithm is on the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 3: RRT* Algorithm 

 

1: 𝑉 ← {𝑥𝑠}, 𝐸 ← {} 

2: while 𝑥𝜏 ∉ 𝑉 do: 

3:  𝑥𝑟𝑎𝑛𝑑 ← 𝑆𝑎𝑚𝑝𝑙𝑒𝐹𝑟𝑒𝑒() 

4:  𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 ← 𝑁𝑒𝑎𝑟𝑒𝑠𝑡((𝑉, 𝐸), 𝑥𝑟𝑎𝑛𝑑) 

5:  𝑥𝑛𝑒𝑤 ← 𝑆𝑡𝑒𝑒𝑟(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡  , 𝑥𝑟𝑎𝑛𝑑) 

6:  if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤) then: 

7:  𝑋𝑛𝑒𝑎𝑟 ← 𝑁𝑒𝑎𝑟((𝑉, 𝐸), 𝑥𝑛𝑒𝑤 , min{𝑟, 𝜖}) 

8:   𝑉 ← 𝑉 ∪ {𝑥𝑛𝑒𝑤} 
9:  𝑐𝑚𝑖𝑛 ← 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡) + 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤)  
10:  for 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟  do: 

11:   if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) then: 

12:    if 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟 , 𝑋𝑛𝑒𝑤) < 𝑐𝑚𝑖𝑛 then: 

13:     𝑥𝑚𝑖𝑛 ← 𝑥𝑛𝑒𝑎𝑟 

14:     𝑐𝑚𝑖𝑛 ← 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟) + 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) 

15:  𝐸 ← 𝐸 ∪ {(𝑥𝑚𝑖𝑛 , 𝑥𝑛𝑒𝑤)} 

16:  for 𝑥𝑛𝑒𝑎𝑟 ∈ 𝑋𝑛𝑒𝑎𝑟  do: 

17:   if 𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛𝐹𝑟𝑒𝑒(𝑥𝑛𝑒𝑎𝑟 , 𝑥𝑛𝑒𝑤) then: 

18:    if 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑤) + 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟 , 𝑋𝑛𝑒𝑤) < 𝐶𝑜𝑠𝑡(𝑥𝑛𝑒𝑎𝑟): 

19:     𝑥𝑝𝑎𝑟𝑒𝑛𝑡 ← 𝑃𝑎𝑟𝑒𝑛𝑡(𝑥𝑛𝑒𝑎𝑟) 

20:     𝐸 ← (𝐸 \ {(𝑥𝑝𝑎𝑟𝑒𝑛𝑡, 𝑥𝑛𝑒𝑎𝑟)}) ∪

{(𝑥𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑎𝑟)}  
21: return 𝐺 = (𝑉, 𝐸) 

 

 

 

 

 

 
 

Figure 3: the RRT* algorithm 
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Figure 4 

After the termination of the algorithm, we can find the shortest path by iteratively finding the 

parents from the goal 𝑥𝜏 to the start node 𝑥𝑠. 

4 Result 

4.1 Performance Comparison 

The runtime performance 

 Single_cube Maze Flappy_bird Monza Window Tower Room 

A* 8s 680s 76s 40s 138s 67s 5s 

LRTA* 1s >10000s 15s 1010s 2s 12s 10s 

RRT* 2s 1477s 14s 9958s 2s 14s 3s 

 

Number of moves needed for the resulting path 

 Single_cube Maze Flappy_bird Monza Window Tower Room 

A* 12 150 41 151 46 48 21 

LRTA* 18 >200000 2962 168053 244 1060 1280 

RRT* 13 125 49 101 39 48 20 

The length of each move is less than 1. 

4.2 Resulting Path for A* 

The resulting path for A* algorithm 
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 Figure 4 shows the resulting path from 7 different 3D environments obtained using A* 

algorithm. The environments with the order from left to right and from top to bottom are 

“Single_cube”, “Maze”, “Flappy_bird”, “Monza”, “Window”, “Tower”, “Room”. 

4.3 Resulting Path for LRTA* 

The resulting path for LRTA* algorithm 

 
 

 

 
Figure 5 

 Figure 5 shows the resulting path from 7 different 3D environments obtained using LRTA* 

algorithm. The environments with the order from left to right and from top to bottom are 

“Single_cube”, “Flappy_bird”, “Window”, “Tower”, “Room”, “Monza”, “Maze”. 
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4.4 Resulting Path of RRT* 

The resulting path for RRT* algorithm 

 
 

 

 
Figure 6 

 Figure 6 shows the resulting path from 7 different 3D environments obtained using RRT* 

algorithm. The environments with the order from left to right and from top to bottom are 

“Single_cube”, “Maze”, “Flappy_bird”, “Monza”, “Window”, “Tower”, “Room”. 

4.5 Discussion 

From the result, we can see that not a single algorithm can beat others in all the cases. All of them 

have some advantages and disadvantages. Therefore, for different environments, their performance 

can be significantly affected. 

 The runtime of A* is very much depend on the size of the environment, and less affected by 

the complexity compared to other algorithms. The A* is the fastest one on “Maze” and “Monza”. 

For these two environments, the heuristic can’t help with the planning, which makes the planning 

problem more difficult. The A* does pretty good job on these because it is not affected by the 

heuristic by putting the visited nodes in the CLOSED node. However, if an environment is very 

large, even if it is simple, A* still needs some time on the planning, which make it worse than the 

LRTA* and RRT*. In terms of the resulting path, the A* can always generate the shortest path 

based on how we discretize the environment. 

 The runtime of LRTA* is significantly affected by the complexity of the environment, and 
less affected by the size compared to other algorithms. The LRTA* is the fastest on “Single_cube”, 

“Window”, and “Tower”. These two environments are not very complicated, and the heuristic 
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provides very helpful information during the planning. The LRTA* is very sensitive to the 

heuristic, and it can be misguided by the heuristic very often. Therefore, even if an environment is 

small, if can also be struck because of the nonhelpful heuristic. However, as long as the heuristic 

is helpful, LRTA* can have a good performance even if the environment is large. Another 

advantage of the LRTA* is that it is agent-centric, so we don’t need to know the entire environment 

in advance and do the path planning beforehand. However, there are lots of back-forward steps on 

the resulting path which makes the path not optimal. 

 The runtime of RRT* is affected by both the size and the complexity of the environment. The 

RRT* performs the best on “Flappy_bird” and “Room”, because these environments have a good 

balance between the complexity and size. For these two environments, the heuristic sometimes 

helps but not always help for the planning. RRT* mitigates the effect of the heuristic by generating 

the random sample in different direction. However, heuristic helps to grow the tree by provides the 

information of the direction. The size of the environments also has an effect because RRT* needs 

to sample more configurations for the larger environment, and it avoid sampling everywhere with 

the help of the heuristic. Therefore, I think RRT* has a good balance between the use of heuristic 

and the randomness. In terms of the resulting path, it is always the shortest based on the sampled 

configurations. 
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