
Page 1

Solve Hill Climbing Problem Using Off-policy and On-policy Model-free

Planning Algorithm

Jingpei Lu JIL360@UCSD.EDU
Department of Electrical & Computer Engineering

University of California, San Diego

1 Problem Formulation

1.1 Problem Setup

The Hill climbing problem is defined as follow: an underpowered car is placed at the bottom of a
convex landscape, and it must drive up a hill. However, since the car does not have enough power

to reach the goal position directly, it must oscillate backwards and forwards in order to accumulate

sufficient potential energy. For any given state (position and velocity) of the car, the agent is given

the possibility of driving left, driving right, or not using the engine at all. The agent receives a

negative reward at every time step when the goal is not reached; the agent has no information about

the goal until an initial success. Initially, the car does not know how to reach the goal, and our goal

is to let the agent learns how to reach the final state using model-free algorithm.

 One challenge of this problem is that it is represented by the continuous state space. As common

reinforcement learning techniques such as SARSA or Q-Learning require a discrete state space.

Therefore, the continuous problem must be approximated as a discrete problem such that we have

finite number of states in the state space 𝑋.

1.2 Markov Decision Process (MDP) Formulation

After discretizing the continuous states, positions and velocity, into sets of discrete state 𝑃 and 𝑉,

we can formulate this problem as a finite-state MDP as:

• The state space is 𝑥𝑡 ∈ 𝑋 ≔ {𝑃 × 𝑉} , which is the cartesian product between

discretized position and velocity. And 𝑥𝑡 = (𝑝𝑡 , 𝑣𝑡) ∈ ℜ2, where 𝑝𝑡 ∈ 𝑃 and 𝑣𝑡 ∈ 𝑉.

• The control space is 𝑢𝑡 ∈ 𝒰 ≔ {0,1,2}, where 0 means driving left, 2 means driving

right, and 1 means not using engine.

• The initial state 𝑥0 can be defined randomly or it can be defined as 𝑥0 = (−0.5, 0).

• The terminal state is 𝑥𝜏 ∈ 𝒯 ≔ {(𝑝𝑡, 𝑣𝑡)| 𝑝𝑡 ≥ 0.6, 𝑝𝑡 ∈ 𝑃, 𝑣𝑡 ∈ 𝑉}.

• The planning horizon is T = 10000.

• The motion model 𝑝𝑓(𝑥𝑡+1|𝑥𝑡 , 𝑢𝑡) is unknown, so we want to use model-free

algorithm.

• The stage cost (negative of the reward) is 𝑙(𝑥𝑡 , 𝑢𝑡) = 1 for 𝑥𝑡 ∈ 𝑋\𝒯.
• The terminal cost is 𝑞(𝑥𝜏) = 0.

1.3 Model-free Optimal Control problem

Since in our problem, the motion model is unknow, we want to use the action-value function

𝑄𝜋(𝑥, 𝑢) to represent the long-term reward of taking action 𝑢 in state 𝑥 and following policy 𝜋

afterward. Our goal is to find the optimal policy that minimizes the long-term cost for every state,

such as:

𝜋∗(𝑥) = 𝑎𝑟𝑔 min
𝑢∈𝒰(𝑥)

𝑄∗(𝑥, 𝑢) ∀𝑥 ∈ 𝑋 (1)

where, 𝑄∗ is the optimal Q function obtained by minimizing the Q-value:

𝑄∗(𝑥, 𝑢): = min
𝜋

𝑄𝜋(𝑥, 𝑢) (2)

Page 2

2 Technical Approach

2.1 State Space Discretization

Inspired by [1], I approximate the state space using the discretization technique: the state space is

subdivided into a set of buckets (a regular grid), and the agent is assigned to the bucket associated

with its current state, that is, the nearest one.

For my implementation, I discretize the continuous state space to a 40 by 40 grid, so there are

40 discrete states along each axis. For example, 𝑥𝑐 = (𝑝𝑐 , 𝑣𝑐) ∈ ℛ2 is a state in continuous state

space, and 𝑝𝑐 ∈ [𝑝𝑚𝑎𝑥,𝑐 , 𝑝𝑚𝑖𝑛,𝑐], 𝑣𝑐 ∈ [𝑣𝑚𝑎𝑥,𝑐 , 𝑣𝑚𝑖𝑛,𝑐]. We can assign 𝑥𝑐 to the nearest state 𝑥𝑑 =
(𝑝𝑑, 𝑣𝑑) in the discrete state space, where

𝑝𝑑 = 𝑖𝑛𝑡((𝑝𝑐 − 𝑝min,𝑐)/𝑠𝑡𝑟𝑖𝑑𝑒𝑝)

𝑣𝑑 = 𝑖𝑛𝑡((𝑣𝑐 − 𝑣min,𝑐)/𝑠𝑡𝑟𝑖𝑑𝑒𝑣)

𝑠𝑡𝑟𝑖𝑑𝑒𝑝 = (𝑝𝑚𝑎𝑥,𝑐 − 𝑝𝑚𝑖𝑛,𝑐)/40

𝑠𝑡𝑟𝑖𝑑𝑒𝑣 = (𝑣𝑚𝑎𝑥,𝑐 − 𝑣𝑚𝑖𝑛,𝑐)/40

2.2 Techniques to ensure convergence

To ensure the convergence to the optimal action-value function 𝑄∗ , we adapt the 𝜖 -Greedy

Exploration method to generate the action, so that we do not commit to the wrong controls too early

and continue exploring the state and control spaces. The 𝜖-Greedy policy is defined as:

𝜋(𝑢|𝑥) = 𝒫(𝑢𝑡 = 𝑢|𝑥𝑡 = 𝑥): = {

1 − 𝜖 +
𝜖

|𝒰(𝑥)|
, 𝑢 = 𝑎𝑟𝑔 min

𝑎∈𝒰(𝑥)
𝑄(𝑥, 𝑎)

𝜖

|𝒰(𝑥)|
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

where, |𝒰(𝑥)| is the size of the control space and 𝜖 is chosen so that the policy is greedy in the

limit with infinite exploitation (GLIE):

• All state-control pairs are explored infinitely many times: lim
𝑘→∞

𝑁(𝑥, 𝑢) = ∞

• The 𝜖-greedy policy converges to a greedy policy:

lim
𝑘→∞

𝜋𝑘(𝑢|𝑥) = 1{𝑢 = 𝑎𝑟𝑔 min
𝑎∈𝒰(𝑥)

𝑄(𝑥, 𝑎)}

Further, we also adapt the learning rate decay method used in [1] to ensure the convergence by

satisfying the Robbins-Monro conditions. The learning rate 𝛼 is adjusted by the episode number as

𝛼 = max(0.003, 1 ∗ 0.85#𝑒𝑝𝑖𝑠𝑜𝑑𝑒|100) (4)

2.3 Implementing an On-policy TD Policy Iteration Algorithm (SARSA)

State–action–reward–state–action (SARSA) is an algorithm for learning a Markov decision process

policy and it updates the policy based on actions taken. Specifically, the updating of the Q-value

depends on the current state of the agent, the action the agent chooses, the reward the agent gets for

choosing this action, the state that the agent enters after taking that action, and finally the next

action the agent choose in its new state. The updating rule can be written as:

𝑄𝜋(𝑥𝑡 , 𝑢𝑡) ← 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) + 𝛼[𝑙(𝑥𝑡 , 𝑢𝑡) + 𝛾𝑄𝜋(𝑥𝑡+1, 𝑢𝑡+1) − 𝑄𝜋(𝑥𝑡 , 𝑢𝑡)] (5)

where, 𝛼 is the learning rate, 𝛾 is the discounted factor, 𝑥𝑡+1 is the observation from the

environment by taking action 𝑢𝑡 at state 𝑥𝑡, and 𝑢𝑡+1 is generated by 𝜋(𝑥𝑡+1).

To ensure the convergence to the optimal action-value function 𝑄∗, we also adapt the 𝜖-Greedy

Exploration method as described in equation (3) and set the learning rate as described in (4) to

satisfy the Robbins-Monro conditions.

For my implementation the discounted factor is 1, the number of episodes is 3000, the 𝜖 is 1

over the number of the episodes. My implement of the SARSA algorithm is described as the

pseudocode below.

Page 3

After obtaining the 𝑄∗(𝑥, 𝑢) using SARSA, we can extract the optimal policy using the

equation (1).

2.4 Implementing an Off-policy TD Policy Iteration Algorithm (Q-Learning)

Q-learning is also a model-free reinforcement learning algorithm for learning a Markov decision

process policy. Unlike the SARSA, which learns the Q values associated with taking the policy it

follows itself, Q-learning updates an estimate of the optimal state-action value function 𝑄∗ based

on the maximum reward of available actions. The updating rule can be expressed as:

𝑄𝜋(𝑥𝑡 , 𝑢𝑡) ← 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) + 𝛼[𝑟(𝑥𝑡 , 𝑢𝑡) + 𝛾 min
𝑢∈𝒰(𝑥𝑡+1)

𝑄𝜋(𝑥𝑡+1, 𝑢) − 𝑄𝜋(𝑥𝑡 , 𝑢𝑡)] (6)

where, 𝛼 is the learning rate, 𝛾 is the discounted factor, 𝑥𝑡+1 is the observation from the

environment by taking action 𝑢𝑡 at state 𝑥𝑡.

To ensure the convergence to the optimal action-value function 𝑄∗, we also adapt the 𝜖-Greedy

Exploration method as described in equation (3) and set the learning rate as described in (4) to

satisfy the Robbins-Monro conditions.

For my implementation the discounted factor is 1, the number of episodes is 3000, the 𝜖 is 1

over the number of the episodes. My implement of the Q-Learning algorithm is described as the

pseudocode below.

After obtaining the 𝑄∗(𝑥, 𝑢) using SARSA, we can extract the optimal policy using the
equation (1).

Algorithm 1: SARSA Algorithm

1: Algorithm parameters: 𝛼 ∈ (0,1], 𝜖 > 0, 𝛾 ∈ (0,1]
2: Initialize 𝑄𝜋(𝑥, 𝑢) = 0, for ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝒰(𝑥)

3: Loop for each episode:

4: Initialize 𝑥0

5: Choose 𝑢0 from 𝜋(𝑢|𝑥0) using 𝜖-Greedy policy

6: For 𝑡 = 0,1,2, … , 𝑇 and the terminal state is not reached, do:

7: Take action 𝑢𝑡, observe 𝑙(𝑥𝑡 , 𝑢𝑡) and 𝑥𝑡+1

8: Choose 𝑢𝑡+1 from 𝜋(𝑢|𝑥𝑡+1) using 𝜖-Greedy policy

9: 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) ← 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) + 𝛼[𝑙(𝑥𝑡 , 𝑢𝑡) +
 𝛾𝑄𝜋(𝑥𝑡+1, 𝑢𝑡+1) − 𝑄𝜋(𝑥𝑡 , 𝑢𝑡)]

Figure 1: The SARSA Algorithm

Figure 2: The Q-Learning Algorithm

Algorithm 2: Q-Learning Algorithm

1: Algorithm parameters: 𝛼 ∈ (0,1], 𝜖 > 0, 𝛾 ∈ (0,1]
2: Initialize 𝑄𝜋(𝑥, 𝑢) = 0, for ∀𝑥 ∈ 𝑋, ∀𝑢 ∈ 𝒰(𝑥)

3: Loop for each episode:

4: Initialize 𝑥0

5: For 𝑡 = 0,1,2, … , 𝑇 and the terminal state is not reached, do:

6: Choose 𝑢𝑡 from 𝜋(𝑢|𝑥𝑡) using 𝜖-Greedy policy

7: Take action 𝑢𝑡, observe 𝑙(𝑥𝑡 , 𝑢𝑡) and 𝑥𝑡+1

8: 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) ← 𝑄𝜋(𝑥𝑡 , 𝑢𝑡) + 𝛼[𝑙(𝑥𝑡 , 𝑢𝑡) + 𝛾 max
𝑢∈𝒰(𝑥𝑡+1)

𝑄𝜋(𝑥𝑡+1, 𝑢) −

 𝑄𝜋(𝑥𝑡 , 𝑢𝑡)]

Page 4

3 Results

3.1 The optimized policy over the state space

Blue dot indicates action 0 (driving left), red dot indicates action 1 (no using engine), green

dot indicates action 2 (driving right).

Optimized policy after 3000 episodes (SARSA)

Optimized policy after 3000 episodes (Q-Learning)

Page 5

Optimized policy after 5000 episodes (SARSA)

Optimized policy after 5000 episodes (Q-Learning)

Page 6

3.2 𝑸(𝒙, 𝒖) over a number of episodes for a set of states

Learning rate decay with discount factor 𝛾 = 1.

State x = (0,0)

Page 7

State x = (-1,0)

Page 8

State x = (0.25,0)

From the figures above, we can see that SARSA is converging faster than Q-Learning in general.

3.3 Hyperparameters analysis

I ran few experiments with different discount factors and fixed learning rate. From my

observation, with learning rate decay, lower discount factors (0.9 and 0.8) will make the Q-value

converges faster but the policy converges slower (see figures below). If I fixed the discount

factor, the learning rate should be set carefully. If it is too small, the algorithm will converge too

slow, if it is too big, the algorithm is hard to converge. Therefore, I think learning rate decay is a

good method to overcome such problems.

Page 9

Learning rate decay with discount factor 𝛾 = 1

State x = (0,0)

Page 10

Learning rate decay with discount factor 𝛾 = 0.9

State x = (0,0)

Page 11

Learning rate decay with discount factor 𝛾 = 0.8

State x = (0,0)

Page 12

References

[1] https://medium.com/@m.alzantot/deep-reinforcement-learning-demysitifed-episode-

2-policy-iteration-value-iteration-and-q-978f9e89ddaa

	Solve Hill Climbing Problem Using Off-policy and On-policy Model-free Planning Algorithm
	1 Problem Formulation
	1.1 Problem Setup
	1.2 Markov Decision Process (MDP) Formulation
	1.3 Model-free Optimal Control problem

	2 Technical Approach
	2.1 State Space Discretization
	2.2 Techniques to ensure convergence
	2.3 Implementing an On-policy TD Policy Iteration Algorithm (SARSA)
	2.4 Implementing an Off-policy TD Policy Iteration Algorithm (Q-Learning)

	3 Results
	3.1 The optimized policy over the state space
	Blue dot indicates action 0 (driving left), red dot indicates action 1 (no using engine), green dot indicates action 2 (driving right).
	Optimized policy after 3000 episodes (SARSA)
	Optimized policy after 3000 episodes (Q-Learning)
	Optimized policy after 5000 episodes (SARSA)
	Optimized policy after 5000 episodes (Q-Learning)
	3.2 𝑸(𝒙,𝒖) over a number of episodes for a set of states

	Learning rate decay with discount factor 𝛾=1.
	State x = (0,0)
	State x = (-1,0)
	State x = (0.25,0)
	3.3 Hyperparameters analysis

	State x = (0,0)
	State x = (0,0)
	State x = (0,0)
	References

