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1 Problem Formulation 

1.1 Problem and Parameter Setup 
In this problem, we will solve the optimal control problem of balancing an inverted pendulum. 
Consider the pendulum state 𝒙 = (𝑥1, 𝑥2)𝑇. The dynamical system is: 

𝑑𝑥 = 𝑓(𝒙, 𝑢)𝑑𝑡 + 𝜎𝑑𝜔                                                           (1) 
𝑓(𝒙, 𝑢): = [

𝑥2
(𝑎𝑠𝑖𝑛𝑥1 − 𝑏𝑥2 + 𝑢)]                                                 (2) 

𝑥1 ∈ 𝜃 ≔ [−𝜋, 𝜋] is the angle of the pendulum, 𝑥2 ∈ 𝜃̇ ≔ [−8,8] is the angular velocity, 𝑢 ∈
[−2,2] is the control, 𝜔 is Brownian motion. The cost function is 

𝑙(𝒙, 𝑢) = 1 − exp(𝑘 ∗ 𝑐𝑜𝑠𝑥1 − 𝑘) +
𝑟
2 𝑢2                                        (3) 

the parameters (𝑎, 𝑏, 𝜎, 𝑘, 𝑟, 𝛾) is set to be (1, 0.5, 0.001, 2, 1e-6, 0.9). We want to solve it using 
value iteration and policy iteration. 

Since the control and state spaces are continuous, we need to discretize them. First, we choose 
the time step 𝛿𝑡 = 0.05 , maximum velocity 𝑥2,max = 8 and maximum control 𝑢max = 2 . We 
discretize the state into (40, 10) number of grid points and discretize the control space into 17 
discrete controls. So, for a given state (𝑥1,𝑐, 𝑥2,𝑐) in continuous space, we can discretize it as     

                      𝑥1 = 𝑖𝑛𝑡 ((𝑥1,𝑐−𝑥1,min)
𝑠𝑡𝑟𝑖𝑑𝑒1

)                           𝑥2 = 𝑖𝑛𝑡 ((𝑥2,𝑐−𝑥2,min)
𝑠𝑡𝑟𝑖𝑑𝑒2

) 

𝑠𝑡𝑟𝑖𝑑𝑒1 =
𝑥1,𝑚𝑎𝑥 − 𝑥1,𝑚𝑖𝑛

40                       𝑠𝑡𝑟𝑖𝑑𝑒2 =
𝑥2,𝑚𝑎𝑥 − 𝑥2,𝑚𝑖𝑛

10  

1.2 Markov Decision Process (MDP) Formulation 
After discretizing the continuous states into sets of discrete state 𝜃 and 𝜃̇, we can formulate this 
problem as a finite-state MDP as: 

• The state space is 𝒙 ∈ 𝑋 ≔ {𝜃 × 𝜃̇}, which is the cartesian product between angle and 
angular velocity. And 𝒙 = (𝑥1, 𝑥2) ∈ ℜ2, where 𝑥1 ∈ 𝜃 and 𝑥2 ∈ 𝜃̇. 

• The control space is 𝑢 ∈ 𝒰 ≔ [−2,2], which is the torque applied to the pendulum 
• The initial state 𝑥0 can be defined randomly as 𝑥0 = (𝑥1,0, 𝑥2,0), where 𝑥1,0 ∈ 𝜃 and 

𝑥2,0 ∈ 𝜃̇ 
• The motion model 𝑝𝑓(𝑥𝑡+1|𝑥𝑡, 𝑢𝑡)  is Gaussian with mean 𝒙 + 𝑓(𝒙, 𝑢)𝛿𝑡  and 

covariance 𝜎𝜎𝑇𝛿𝑡, where 𝑓(. ) is defined in equation (2). 
• The stage cost is 𝑙(𝒙, 𝑢)𝛿𝑡 for 𝒙 ∈ 𝑋, where 𝑙(𝒙, 𝑢) is defined in equation (3)  

1.3 Optimal Control Problem 
Given this MDP formulation, our goal is to find the optimal policy that minimizes the long-term 
cost for every state by solving the Bellman Equation: 

𝑉∗(𝑥) = min
𝑢∈𝒰(𝑥)

(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′ ))
𝑥′∈𝑋

         ∀𝑥 ∈ 𝑋      (4) 
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1.4 Interpolation Problem 
Since we solve this problem by first formulate it as a discrete MDP problem, we need to 
approximate the solution of the original continuous problem by interpolating the resulting discrete 
space optimal policy into a continuous space policy, so that we can obtain the optimal policy 𝜋 for 
any state 𝑥𝑐 ∈ ℛ2 in continuous state space 𝑋𝑐.  

2 Technical Approach 

2.1 Value Iteration Algorithm 
Value iteration is a method of computing an optimal MDP policy and its value. My implementation 
of the Value Iteration Algorithm is described as below. 

2.2 Policy Iteration Algorithm 
While value-iteration algorithm keeps improving the value function at each iteration until the value-
function converges, policy-iteration instead of repeated improving the value-function estimate, it 
will re-define the policy at each step and compute the value according to this new policy until the 
policy converges. My implementation of the Policy Iteration Algorithm is described as below. 

 

Algorithm 1: Value Iteration Algorithm 
 
1: Initialize 𝑉(𝑥) = 0, for ∀𝑥 ∈ 𝑋 
2: Loop for episode 1, 2, … 50: 
3:  𝛿 = 0 
4:  For each 𝑥 ∈ 𝑋: 
5:  𝑣 ← 𝑉(𝑥) 
6:  𝑉(𝑥) ← min

𝑢∈𝒰(𝑥)
(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′ ))𝑥′∈𝑋  

7:  𝛿 ← max (𝛿, |𝑣 ← 𝑉(𝑥)|) 
8: If 𝛿 < some threshold: break loop 
9: For each 𝑥 ∈ 𝑋: 
10: 𝜋(𝑥) ← argmin

𝑢∈𝒰(𝑥)
(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′ ))𝑥′∈𝑋  

 
 
 
 
 
 

Figure 1: Value Iteration Algorithm 

Algorithm 2: Policy evaluation 
 
1: For given policy 𝜋 
2: Initialize 𝑉(𝑥) = 0, for ∀𝑥 ∈ 𝑋 
3: Loop for episode 1, 2, … 50: 
4:  Loop for each 𝑥 ∈ 𝑋: 
5:   𝑉(𝑥) = ∑ 𝑝(𝑥′|𝑥, 𝜋(𝑥))[𝑙(𝑥, 𝜋(𝑥)) + 𝛾𝑉(𝑥′)]𝑥′  
 
 
 
 
 

Algorithm 3: Policy improvement 
 
1: For given value function 𝑉 
2: Loop for each 𝑥 ∈ 𝑋: 
3:  𝜋(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ∑ 𝑝(𝑥′|𝑥, 𝑢)[𝑙(𝑥, 𝑢) + 𝛾𝑉(𝑥′)]𝑥′  
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2.3 Policy Interpolation 
After obtaining the 𝜋∗ in discrete state space 𝑋, we can approximate the policy 𝜋∗ to continuous 
state space 𝑋𝑐 using linear interpolation. For given state 𝑥𝑐 ∈ 𝑋𝑐 , we approximate 𝜋(𝑥𝑐) by first 
finding its two nearest state in discrete state space 𝑥𝑑, 𝑥𝑑+1 ∈ 𝑋. Then we can estimate the 𝜋(𝑥𝑐) 
as 

𝜋(𝑥𝑐) = 𝜋(𝑥𝑑) + (𝜋(𝑥𝑑+1) − 𝜋(𝑥𝑑))
𝑥𝑐 − 𝑥𝑑

𝑥𝑑+1 − 𝑥𝑑
                               (5) 

 

3 Results 

3.1 The optimized policy over the state space 
Left: value iteration                                             Right: policy iteration 

  
 
From the figures above, we can see that the optimal policy over 50 episodes are very similar for 
these two algorithms.  
 
 
 
 

Algorithm 4: Policy Iteration Algorithm 
 
1: Initialize 𝑉(𝑥) = 0 and 𝜋(𝑥) ∈ 𝒰 randomly, for ∀𝑥 ∈ 𝑋 
2: Loop for episode 1, 2, … 50: 
3: Given 𝜋(𝑥), running Policy Evaluation to estimate 𝑉𝜋(𝑥) for ∀𝑥 ∈ 𝑋 
4:          Given 𝑉𝜋(𝑥), obtain 𝜋′(𝑥) by running Policy Improvement one time. 
5: 𝜋(𝑥) = 𝜋′(𝑥) for ∀𝑥 ∈ 𝑋 
 
 
 
 
 
 

Figure 2: Policy Iteration Algorithm 
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3.2 The value function over the state space 
Left: value iteration                                              Right: policy iteration 

  
From the figures above, we can see that the final value functions over 50 episodes are very similar 
for these two algorithm.  

3.3 Trajectory simulation 
Left: value iteration                                                 Right: policy iteration 

 
From the figures above, we can see the trajectories of different starting points. Both algorithms 
converge to the center of the plot with slightly different trajectories. 
 
 



Page 5 
 

 

3.4 V(x) over episodes between VI and PI for a set of states 

 

 
 
From the figures above we can see that the Policy Iteration (PI) converges much faster than the 
Vale Iteration (VI). However, in practice, PI runs much slower than VI.  
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