
Page 1

Balancing Inverted Pendulum Using MDP Approximation

Jingpei Lu JIL360@UCSD.EDU
Department of Electrical & Computer Engineering
University of California, San Diego

1 Problem Formulation

1.1 Problem and Parameter Setup
In this problem, we will solve the optimal control problem of balancing an inverted pendulum.
Consider the pendulum state 𝒙 = (𝑥1, 𝑥2)𝑇. The dynamical system is:

𝑑𝑥 = 𝑓(𝒙, 𝑢)𝑑𝑡 + 𝜎𝑑𝜔 (1)
𝑓(𝒙, 𝑢): = [

𝑥2
(𝑎𝑠𝑖𝑛𝑥1 − 𝑏𝑥2 + 𝑢)] (2)

𝑥1 ∈ 𝜃 ≔ [−𝜋, 𝜋] is the angle of the pendulum, 𝑥2 ∈ 𝜃̇ ≔ [−8,8] is the angular velocity, 𝑢 ∈
[−2,2] is the control, 𝜔 is Brownian motion. The cost function is

𝑙(𝒙, 𝑢) = 1 − exp(𝑘 ∗ 𝑐𝑜𝑠𝑥1 − 𝑘) +
𝑟
2 𝑢2 (3)

the parameters (𝑎, 𝑏, 𝜎, 𝑘, 𝑟, 𝛾) is set to be (1, 0.5, 0.001, 2, 1e-6, 0.9). We want to solve it using
value iteration and policy iteration.

Since the control and state spaces are continuous, we need to discretize them. First, we choose
the time step 𝛿𝑡 = 0.05 , maximum velocity 𝑥2,max = 8 and maximum control 𝑢max = 2 . We
discretize the state into (40, 10) number of grid points and discretize the control space into 17
discrete controls. So, for a given state (𝑥1,𝑐, 𝑥2,𝑐) in continuous space, we can discretize it as

 𝑥1 = 𝑖𝑛𝑡 ((𝑥1,𝑐−𝑥1,min)
𝑠𝑡𝑟𝑖𝑑𝑒1

) 𝑥2 = 𝑖𝑛𝑡 ((𝑥2,𝑐−𝑥2,min)
𝑠𝑡𝑟𝑖𝑑𝑒2

)

𝑠𝑡𝑟𝑖𝑑𝑒1 =
𝑥1,𝑚𝑎𝑥 − 𝑥1,𝑚𝑖𝑛

40 𝑠𝑡𝑟𝑖𝑑𝑒2 =
𝑥2,𝑚𝑎𝑥 − 𝑥2,𝑚𝑖𝑛

10

1.2 Markov Decision Process (MDP) Formulation
After discretizing the continuous states into sets of discrete state 𝜃 and 𝜃̇, we can formulate this
problem as a finite-state MDP as:

• The state space is 𝒙 ∈ 𝑋 ≔ {𝜃 × 𝜃̇}, which is the cartesian product between angle and
angular velocity. And 𝒙 = (𝑥1, 𝑥2) ∈ ℜ2, where 𝑥1 ∈ 𝜃 and 𝑥2 ∈ 𝜃̇.

• The control space is 𝑢 ∈ 𝒰 ≔ [−2,2], which is the torque applied to the pendulum
• The initial state 𝑥0 can be defined randomly as 𝑥0 = (𝑥1,0, 𝑥2,0), where 𝑥1,0 ∈ 𝜃 and

𝑥2,0 ∈ 𝜃̇
• The motion model 𝑝𝑓(𝑥𝑡+1|𝑥𝑡, 𝑢𝑡) is Gaussian with mean 𝒙 + 𝑓(𝒙, 𝑢)𝛿𝑡 and

covariance 𝜎𝜎𝑇𝛿𝑡, where 𝑓(.) is defined in equation (2).
• The stage cost is 𝑙(𝒙, 𝑢)𝛿𝑡 for 𝒙 ∈ 𝑋, where 𝑙(𝒙, 𝑢) is defined in equation (3)

1.3 Optimal Control Problem
Given this MDP formulation, our goal is to find the optimal policy that minimizes the long-term
cost for every state by solving the Bellman Equation:

𝑉∗(𝑥) = min
𝑢∈𝒰(𝑥)

(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′))
𝑥′∈𝑋

 ∀𝑥 ∈ 𝑋 (4)

Page 2

1.4 Interpolation Problem
Since we solve this problem by first formulate it as a discrete MDP problem, we need to
approximate the solution of the original continuous problem by interpolating the resulting discrete
space optimal policy into a continuous space policy, so that we can obtain the optimal policy 𝜋 for
any state 𝑥𝑐 ∈ ℛ2 in continuous state space 𝑋𝑐.

2 Technical Approach

2.1 Value Iteration Algorithm
Value iteration is a method of computing an optimal MDP policy and its value. My implementation
of the Value Iteration Algorithm is described as below.

2.2 Policy Iteration Algorithm
While value-iteration algorithm keeps improving the value function at each iteration until the value-
function converges, policy-iteration instead of repeated improving the value-function estimate, it
will re-define the policy at each step and compute the value according to this new policy until the
policy converges. My implementation of the Policy Iteration Algorithm is described as below.

Algorithm 1: Value Iteration Algorithm

1: Initialize 𝑉(𝑥) = 0, for ∀𝑥 ∈ 𝑋
2: Loop for episode 1, 2, … 50:
3: 𝛿 = 0
4: For each 𝑥 ∈ 𝑋:
5: 𝑣 ← 𝑉(𝑥)
6: 𝑉(𝑥) ← min

𝑢∈𝒰(𝑥)
(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′))𝑥′∈𝑋

7: 𝛿 ← max (𝛿, |𝑣 ← 𝑉(𝑥)|)
8: If 𝛿 < some threshold: break loop
9: For each 𝑥 ∈ 𝑋:
10: 𝜋(𝑥) ← argmin

𝑢∈𝒰(𝑥)
(𝑙(𝑥, 𝑢) + 𝛾 ∑ 𝑝𝑓(𝑥′|𝑥, 𝑢)𝑉∗(𝑥′))𝑥′∈𝑋

Figure 1: Value Iteration Algorithm

Algorithm 2: Policy evaluation

1: For given policy 𝜋
2: Initialize 𝑉(𝑥) = 0, for ∀𝑥 ∈ 𝑋
3: Loop for episode 1, 2, … 50:
4: Loop for each 𝑥 ∈ 𝑋:
5: 𝑉(𝑥) = ∑ 𝑝(𝑥′|𝑥, 𝜋(𝑥))[𝑙(𝑥, 𝜋(𝑥)) + 𝛾𝑉(𝑥′)]𝑥′

Algorithm 3: Policy improvement

1: For given value function 𝑉
2: Loop for each 𝑥 ∈ 𝑋:
3: 𝜋(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛𝑢 ∑ 𝑝(𝑥′|𝑥, 𝑢)[𝑙(𝑥, 𝑢) + 𝛾𝑉(𝑥′)]𝑥′

Page 3

2.3 Policy Interpolation
After obtaining the 𝜋∗ in discrete state space 𝑋, we can approximate the policy 𝜋∗ to continuous
state space 𝑋𝑐 using linear interpolation. For given state 𝑥𝑐 ∈ 𝑋𝑐 , we approximate 𝜋(𝑥𝑐) by first
finding its two nearest state in discrete state space 𝑥𝑑, 𝑥𝑑+1 ∈ 𝑋. Then we can estimate the 𝜋(𝑥𝑐)
as

𝜋(𝑥𝑐) = 𝜋(𝑥𝑑) + (𝜋(𝑥𝑑+1) − 𝜋(𝑥𝑑))
𝑥𝑐 − 𝑥𝑑

𝑥𝑑+1 − 𝑥𝑑
 (5)

3 Results

3.1 The optimized policy over the state space
Left: value iteration Right: policy iteration

From the figures above, we can see that the optimal policy over 50 episodes are very similar for
these two algorithms.

Algorithm 4: Policy Iteration Algorithm

1: Initialize 𝑉(𝑥) = 0 and 𝜋(𝑥) ∈ 𝒰 randomly, for ∀𝑥 ∈ 𝑋
2: Loop for episode 1, 2, … 50:
3: Given 𝜋(𝑥), running Policy Evaluation to estimate 𝑉𝜋(𝑥) for ∀𝑥 ∈ 𝑋
4: Given 𝑉𝜋(𝑥), obtain 𝜋′(𝑥) by running Policy Improvement one time.
5: 𝜋(𝑥) = 𝜋′(𝑥) for ∀𝑥 ∈ 𝑋

Figure 2: Policy Iteration Algorithm

Page 4

3.2 The value function over the state space
Left: value iteration Right: policy iteration

From the figures above, we can see that the final value functions over 50 episodes are very similar
for these two algorithm.

3.3 Trajectory simulation
Left: value iteration Right: policy iteration

From the figures above, we can see the trajectories of different starting points. Both algorithms
converge to the center of the plot with slightly different trajectories.

Page 5

3.4 V(x) over episodes between VI and PI for a set of states

From the figures above we can see that the Policy Iteration (PI) converges much faster than the
Vale Iteration (VI). However, in practice, PI runs much slower than VI.

	Balancing Inverted Pendulum Using MDP Approximation
	1 Problem Formulation
	1.1 Problem and Parameter Setup
	1.2 Markov Decision Process (MDP) Formulation
	1.3 Optimal Control Problem
	1.4 Interpolation Problem

	2 Technical Approach
	2.1 Value Iteration Algorithm
	2.2 Policy Iteration Algorithm
	2.3 Policy Interpolation

	3 Results
	3.1 The optimized policy over the state space
	3.2 The value function over the state space
	3.3 Trajectory simulation
	3.4 V(x) over episodes between VI and PI for a set of states

