
ECE 276C Assignment 1 Report: Classical Control

Jingpei Lu
Jacob School of Engineering

University of California, San Diego

Date: October 14, 2019

1 2 DoF Arm

Our 2 DoF arm has two joint and two links. The central joint has joint angle q0 and the elbow joint has

the joint angle q1. The link l0 is from central joint to elbow joint, and the link l1 is from elbow joint to the

end-effector. The length of the links are fixed, where l0 = 0.1m and l1 = 0.11m. The end-effector position

is [x, y]T ∈ R2.

1.1 Forward kinematics

Forward kinematics for a robot arm involves figuring out a function that takes as its inputs the angles

of each joint and computes the end-effector position. The mapping from joint angles to the end-effector

position of our 2 DoF arm is as follow:
x

y

 =

l0 cos(q0) + l1 cos(q0 + q1)
l0 sin(q0) + l1 sin(q0 + q1)

 (1)

1.2 Jacobian Matrix

Using the Jacobian matrix, we can describe the relationship between the joint velocities and the end-

effector velocities as δx = J(q)δq, where q = [q0,q1]T ∈ R2. For our 2 DoF arm, the Jacobian is as

follow:

J(q) =

− sin(q0)l0 − sin(q0 + q1)l1 − sin(q0 + q1)l1
cos(q0)l0 + cos(q0 + q1)l1 cos(q0 + q1)l1

 (2)

1.3 Inverse kinematics

Inverse kinematics for a robot arm entails finding a function which takes the target position of the end-

effector as an input and computes the join angles q0 and q1 which put the end-effector of the arm at the target

position. The algorithm of calculating the inverse kinematics is as follow:

1

Algorithm 1 Find Inverse kinematics
1: procedure getIK(xe, ye) ▷ xe, ye are coordinates of target end-effector position

2: Set the error tolerance et = 1e − 5

3: Get current joint angles q = [q0,q1]T

4: Get current end-effector position [xt, yt]T

5: while | |xe − xt, ye − yt | | > et do
6: Calculate the Jacobian matrix J for current joint angles q

7: Calculate the pseudoinverse of the jacobian J†

8: δq← J†[xe − xt, ye − yt]T

9: q← q + δq

10: [xt, yt]T ← calculate forward kinematics from updated q

11: return q

1.4 PD-controller with End-effector Position Error

To controls the robot arm moving along the given path, I sampled 60 points along the path and imple-

mented trajectory control. For the PD-controller, I was using the error in the end-effector as the input signal.

The gain for the proportional term is Kp = 0.0005 and the gain for the the derivative term is Kd = 0.00001.

The resulting trajectory is on the figure below, and the mean square error between the resulting trajectory

and desired trajectory is 0.00019.

Figure 1: This figure shows the desired trajectory (blue) and the resulting trajectory after each step (red).

1.5 PD-controller with Joint-Angles Error

This time, I also divied the given path to 60 small trajectory while using the error in the joint-angles

as the input signal for the PD-controller. The gains for different joints are different. For the proportional

2

term, the gain for the central joint is Kp0 = 0.001 and the gain for the elbow joint is Kp1 = 0.002. For the

derivative term, the gain for the central joint is Kd0 = 1e− 5 and the gain for the elbow joint is Kd1 = 1e− 5.

The resulting trajectory is on the figure below, and the mean square error between the resulting trajectory

and desired trajectory is 0.00021.

Figure 2: This figure shows the desired trajectory (blue) and the resulting trajectory after each step (red).

2 Race Car

The objective of this environment is to make the race car complete a trajectory within the given time.

The action space of the environment is [δf ,a], where δf is wheel steering angles and a is the thrust. They are

all normalized to the range between -1 and 1. The observation space consists of [x, y, θ, vx, vy, Ûθ, h], where

(x, y, θ) is the inertial frame position of the car and vx, vy is the longitudinal and lateral velocities respectively,

and Ûθ is the angular rotation of the car. h ∈ R2 is the co-ordinate on the track the car has to reach.

The algorithm of computing the action from given observation is described in the algorithm 2, and

the resulting trajectories are shown in the figure 3. For the performance, this controller takes 380 steps

to finish the "FigureEight" and 196 steps to finish the "Circle" by setting max_speed_threshold to 8,

min_speed_threshold to 6, Kp, f to 1, and Kp,a to 1/20.

3

Algorithm 2 Race Car Controller

1: procedure get-Action(x, y, θ, vx, vy, Ûθ, h)

2: Ûϕ← angles between moving direction of the car and the direction from the position of the car [x, y]
to target position h

3: | |v | | ←
√
v2
x + v

2
y

4: β← arcsin(lr
| |v | |
Ûϕ) ▷ lr is the distance from the center of the mass to the rear axles

5: δf ← arctan(tan(β) lr+l flr
) ▷ lf is the distance from the center of the mass to the front axles

6: δf ← Kp, f ∗ δf | |v | |π/2 ▷ normalize to [-1,1] and proportional to | |v | |
7: d ← distance between the coordinates of the car and target coordinates

8: a← Kp,a ∗ d and normalize to [-1,1]

9: if | |v | | > max_speed_threshold then a← −1 ▷ no thrust if too fast

10: if | |v | | < min_speed_threshold then a← 1 ▷ full thrust if too slow

11: return [δf ,a]

Figure 3: The resulting trajectories (red) and the desired trajectories (blue) in different environments. Top plot:
"FigureEight". Bottom left: "Circle". Bottom right: "Linear".

4

	2 DoF Arm
	Forward kinematics
	Jacobian Matrix
	Inverse kinematics
	PD-controller with End-effector Position Error
	PD-controller with Joint-Angles Error

	Race Car

