
Reinforcement Learning for Automating Control on
the daVinci Surgical Robot

Jingpei Lu and Soumyaraj Sreeman Bose

Abstract—Automation of robotic surgeons is the next milestone
to be attained in medicine and, is already of prime importance to
areas with extreme necessity but severe lack of medicare. With the
motivation to solve this problem, we use a reinforcement learning
(RL) approach to automate the arm of a da Vinci® surgical
robot. This works solves the reach problem on the simulator of
the da Vinci® robot arm. The simulator is enabled with dynamic
properties with a goal to recreate realistic behaviour in the arm. A
custom Gym environment is created for the same and is modified
to control the arm in joint-space. The model is then trained
using time-delayed methods, such as DDPG and TD3, to reach a
randomly selected goal position. Training with TD3 with a dense
reward-based model yields a better result than with DDPG, with
the system reaching the goal in under thirty episodes.

I. INTRODUCTION

The fact that artificial intelligence (AI) has penetrated
into every aspect of life is redundant, to say the least. AI
frameworks are continually used not just in analyzing daily
phenomena but, in automating the simplest aspects of daily
life. However, one field of work where the incorporation of
AI is being practiced with restraint, primarily for the risks at
hand, but will immensely profit from it is surgical robotics.

Richter et. al. [1] is one of the few efforts to employ aspects
of AI with the motivation to automate it to perform standard
surgical tasks. It realized a reinforcement learning (RL) frame-
work to enable automation on the daVinci® surgical robot,
building upon the computational structure from the daVinci
Research Kit (dVRK) [2]. Known as the dVRL framework, it
is currently used to train the Patient Side Manipulator (PSM)
of the robot to pick an object or reach an end-effector position.

However, in case of the dVRL setup, the PSM arm in
simulation lacks dynamic properties. Hence, in essence, it
only approximates and does not recreate most responses it
would have to interactions with bodies in the real-world. This
property of the simulator is pivotal to checking collisions with
objects (specifically, organs in the patient’s body) and, learning
complicated tasks such as guiding a tool to suture a wound.

This project aims to complete this aspect by incorporating
dynamics into the simulator and, using a framework similar to
the dVRL to solve a form of the reach problem. To generate an
optimal policy for reaching a target position, this dynamically-
enabled model is trained using deep reinforcement learning al-
gorithm such as Deep Deterministic Policy Gradients (DDPG)
[3] and Twin Delayed Deep Deterministic Policy Gradients

Jingpei Lu, and Soumyaraj Sreeman Bose are affiliated with the Department
of Electrical and Computer Engineering and the Department of Mathematics,
respectively, at University of California San Diego, La Jolla, CA 92093 USA.
{jil360, ssbose}@ucsd.edu

Fig. 1: A dynamically-enabled simulator of a dVRK PSM
arm in the V-REP software environment

(TD3) [4]. The result is a system using joint positions as inputs
to successfully guide its end-effector to randomly generated
goal positions, in the presence of other systems in its vicinity.

II. BACKGROUND

A. The Training Environment for Reinforcement Learning

Reinforcement learning assumes that there is an agent that
is situated in an environment. For each step, the agent takes
an action and it receives an observation and a reward from
the environment. Specifically, after the agent takes an action,
following prevalent RL frameworks, it will receive a set of
variables namely observation, reward, done and info, which
are defined as (enclosed are the type of values they take)
• Observation (object): An environment-specific object rep-

resenting the observation of the environment. For exam-
ple, pixel data from a camera, joint positions and joint
velocities of a robot, or the board state in a board game.

• Reward (float): Incentive received by the agent upon
taking an action. The scale varies between environments,
but the goal is always to increase the total reward.

• Done (boolean): This indicates whether it is time to reset
the environment again. Most tasks are divided up into
episodes (with a fixed number of steps per episode) and,
done being True indicates the episode has terminated.

• Info (dict): Diagnostic information useful for debugging.
This can be used in studies to gain more insight about
the system (for example, it might contain the raw prob-
abilities behind the environment’s last state change).

An RL algorithm seeks to maximize some measure of the
agent’s total reward, as the agent interacts with the environ-
ment. In the RL literature, the environment is formalized as a
partially observable Markov decision process (POMDP).

B. Reinforcement Learning for Automating Control

We consider the standard RL formalism consisting of an
agent interacting with an environment, where we have a set
of states S, actions A, the discount factor γ ∈ [0, 1], a reward
function r : S×A→ R, and policies π : S → A. The agent’s
goal is to find a policy that maximizes its expected return
Es0 [R0|s0], where Rt =

∑∞
i=t γ

i−tri. One of the primary
goals of the field of artificial intelligence is to solve complex
tasks from unprocessed, high-dimensional, sensory input. One
famous approach to solve this problem with reinforcement
learning is the Deep Q Network (DQN) algorithm [5] that
is capable of human level performance on many Atari video
games using unprocessed pixels for input.

In DQN, we employ a neural network which approxi-
mates the optimal action-value function Q : S × A → R.
During training, for each episode, this setup generates the
current approximation of the Q, and tuples for each transition
(st, at, rt, st+1), which are stored in the so-called replay
buffer. The network is trained using samples in the replay
buffer and by applying gradient descent to the loss function:

L = E[(Q(st, at)− yt)2] (1)

where yt = rt + γmaxa′∈AQ(st+1, a
′).

However, while DQN solves problems with high-
dimensional observation spaces, it can only handle discrete and
low-dimensional action spaces. Lillicrap et. al. successfully
adapted deep reinforcement learning methods such as DQN to
continuous domains, thus developing the Deep Deterministic
Policy Gradient (DDPG) algorithm [3]. DDPG uses two neural
networks: one, an action-value function approximator (critic)
Q : S × A → R, and, the other, a target policy approximator
(actor) π : S → A. The transition tuples used for training
are also sampled from the replay buffer. The critic network is
trained with a similar loss function as (1) but the targets yt
are computed using actions generated by the actor network,
i.e. yt = rt + γQ(st+1, π(st+1)). Hence, the actor is trained
using the loss function given by:

La = −Es[Q(s, π(s))] (2)

Although DDPG is capable of providing excellent results, it
has its drawbacks. Like many RL algorithms, training DDPG
can be unstable and heavily reliant on finding the correct
hyperparameters for the current task. This is caused by the
algorithm continuously overestimating the Q values of the
critic (value) network. These estimation errors build up over
time and can lead to the agent falling into a local optima
or experience catastrophic forgetting. Scott et al. addressed
this issue by focusing on reducing the overestimation bias
seen in previous algorithms by developing the Twin Delayed
Deep Deterministic Policy Gradient (TD3) [4] algorithm. They
improved upon DDPG by adding the following features: a pair

Fig. 2: Frame Definition of the daVinci® PSM

of critic networks, delayed updates to the actor network and
regularization of the action using noise (e.g. O-U noise).

III. METHODOLOGY

A. Dynamics for da Vinci PSM Simulator

The Dynamic dVRL setup contains some noticeable up-
grades and deviations with respect to the framework in [1]. The
first is its lightweight synchronization of a Python interface
with V-REP using the PyRep [6] module, instead of the V-REP
remote API. The daVinci PSM scene in V-REP uses the same
PSM model as in Fontanelli et. al. [7] (Fig. 1). However, unlike
[1], the Dynamic dVRL simulator is enabled with dynamics
data generated from the work of Wang et. al. [8].

Wang et. al. proposed a convex optimization-based method
to identify dynamic parameters of the seven (with the gripper
discretized as two for computational simplicity, one to control
the yaw of the gripper and the other to adjust its jaw angle)
joints associated with the daVinci®. A frame definition of the
PSM realized for computing the dynamics is shown above
(Fig. 2). [8] solves for these parameters by modelling the
dynamics using the Euler-Lagrange equation:

τi =
d

dt

∂L

∂qi
− ∂L

∂qi
(3)

Here, L represents an inertia tensor containing the moments
of inertia about the frames associated with each of the joints.
qi explains the position of joint i and τi represents the torque
on the motor due to the inertia in joint i. Note that, a few
approximations have been made in the case of the Dynamic
dVRL based on the results of [8]. Primarily, friction in the
links and motor inertia have been neglected owing to their
considerably low values (in the order of less than 10−3).

Another deviation from [1] is the fact that the dynamic
dVRK is controlled in joint configuration space, instead of
end-effector space. This implies that joint positions and/or
velocities (even torques) serve as inputs and are controlled
to make the system reach a position. Operating the dVRK in
joint space helps in realizing the contribution of and better
controlling a joint to cause the collective motion of system.

This is especially helpful, when considering a scenario, where
larger parts of the PSM are in collision with objects in the
world outside the patient’s body (a device or another individ-
ual), even though the gripper functions within its bounds.

Joints in the scene are enabled with PD control via the
Spring-Damper mode in V-REP, which follows the relation:

F = Kei + C
(ei − ei−1)

∆t
(4)

The Spring-Damper mode enables V-REP’s control mech-
anism to control the position (angle for revolute) that the
joint attains by modifying force/torque on the joint’s motor
to regulate the error in position attained at time-step i or ei.
The mechanism applies proportional (P) control in the form of
a spring constant (K) to check position error and, derivative
(D) control by damping noise due to a net rate of change in
error across two consecutive time-steps with a coefficient (C).

To verify dynamics, prior to training, the joints are driven to
follow test trajectories given by [8], using functionality from
[6] to set and get joint positions and velocities in a simulation.
For this project, we also tune the PD control parameters (i.e.
K and C) for the joints to check whether the system is stable
upon enabling dynamics. To ensure that the tuning does not
result in an overfit to the test trajectory, it is first performed
on a simple response function such as a step or sine wave.

The verification yields the average error in tracking test tra-
jectory for each joint, as tabulated in Table 1. The considerably
low error values for this check help testify for the simulator
to be used further by the Dynamic dVRL setup.

TABLE I: Average error in tracking test trajectory for each
of the seven joints of the Dynamic dVRL simulator

Joint Average Error
1 0.004345
2 0.001865
3 0.001005
4 0.006488
5 0.000680
6 0.006658
7 0.005178

B. The Customized Gym Environment

The Dynamic dVRL framework integrates the V-REP soft-
ware environment (for robot simulations) with the framework
of OpenAI Gym [9]. Figure 3 shows the block diagram of our
framework. The problem at hand, as solved for a non-dynamic
scenario by [1], involves a continuous state and action space,
dictated by design configurations of the daVinci system. Since
the aim is to generate an optimal policy, the simulator will
learn from a reward model, depending on the objective of
the problem being solved (if reach, then distance from goal
position; if pick, then height above a base level).

This project is focused on solving the reach task, where
the gripper is driven to reach a random goal position within
the bounds of a table by passing target positions to the first
five joints. Its position is, then, recorded for reward and

convergence calculations. The goal and gripper are oriented
about a base frame in the space of the simulator and, their
positions are always computed with respect to this base frame.

To formulate this as an RL problem, we choose the state
space to be the combination of joint positions and the goal
position. The action space is composed of target positions
for the five joints. We also incorporate two types of reward
functions into the framework. We use the negative of the
distance between the end-effector position and goal position
as a dense reward, and 0/1 reward of successful reach as a
sparse reward. Here are their symbolic representations:

• States: st = [qqqt pgoal], where qqqt =
(θ1,t, θ2,t, p3,t, θ4,t, θ5,t) are joint positions (for the
first five joints) in radians and metres (for the 3rd and
only prismatic joint) at time t and pgoal = (x, y, z) is
the goal position for that episode in metres.

• Actions: at = (θ̂1, θ̂2, p̂3, θ̂4, θ̂5) which are target posi-
tions for the joint to attain.

• Reward: We use two types of reward functions
Continuous r(st) = −||pactual − pgoal|| and,
Discrete/Sparse reward

r(st) =

{
1 if ||pactual − pgoal|| < ε

0 otherwise
(5)

where pactual is the end-effector position and ε is a
threshold to determine whether the end-effector is close
enough to the goal position.

Since we are setting the target joint positions to the simu-
lator directly, to ensure stability of the simulation, we define
the joint positions of the next state to be

qi,t+1 = αq̂i + qi,t (6)

where i = [1, 2, 3, 4, 5] indicates each joint and α is a scaling
factor. We also clip the target joint positions to the range
[qi,min, qi,max] for each joint to make sure we do not exceed
any limits imposed on the joint by the daVinci’s actual design.

IV. EXPERIMENTS

To learn the policy of reaching a goal, we trained the agent
using DDPG and TD3 with dense reward. The threshold for
successful reach is set to ε = 5mm and the scaling factor is
set to α = 0.1. For training the model,

• the reward discount factor is set to γ = 0.99,
• the learning rate for both actor and critic networks is 1e-3.
• the parameters of the actor and critic networks and

replay buffer are derived from the implementations in the
original papers for DDPG [3] and TD3 [4]

The training is done for 106 steps with batch size equals to
100. For experiments, the agents is trained on a fixed goal
position setting as well as a random goal position setting and
the results are showed in Figures 4 and 5 respectively.

Fig. 3: We customized a gym-like reach environment for the daVinci® surgical robot by interfacing a dynamically-enabled
simulator in a V-REP scene. An agent interacts with the environment with actions and the environment interfaces with the

simulator by applying the control inputs corresponding to the actions. Then, the environment provides feedback to the agent
by obtaining joint positions, the end-effector and goal positions from the simulator.

Fig. 4: The learning curves for the reach task with a fixed
goal setting. The x-axis indicates the episode number and the
y-axis indicates the moving average of the discounted reward
over episodes. The orange line represents the learning curve
for TD3 and the blue line represents DDPG. While DDPG
converges slowly, TD3 converges quickly but it drops later.

Fig. 5: The learning curves for the reach task with random
goal setting. The x axis indicates the episode number and the
y axis indicates the moving average of the discounted reward
over episodes. The orange line represents the learning curve
for TD3 and the blue line represents the DDPG. In this case,

none of them converge. We will discuss this in Section V.

V. DISCUSSION AND CONCLUSION

While the dynamic model allows for successful training of
algorithms such as DDPG and TD3, there are problems which
arise in the system that call for attention. A major anomaly
is the apparent reorientation of the entire model as it is reset
over a considerable number of episodes. A plausible reason for
this situation is that some of the state variables, though being
sampled from a fixed range of values, may have eventually
compounded in value after multiple episodes.

Another pitfall experienced by using this model is its
inability to learn from a sparse reward setup. Unlike the

non-dynamic case where the gripper is set to a particular
position and reaches it unfailingly, joint space-control does not
guarantee the gripper precisely reaching a target. However, it
manages to sensitize the system to its surroundings and allows
us to realize the extremes it can reach, thus helping develop
a true representation by giving us the breadth of responses.

Our future investigations into solving this problem can take
two particular routes. The first involves improving the dynamic
model being used, since some failure cases in training may be
attributed to the system hitting a limit in the dynamics. The
second route can involve the identification and application of
methods that enable learning from the experience of “failure in
attaining goals”, but for dense rewards. Alternatively, to allow
training on a sparse reward-based model, the TD approach can
be retained but modified to account for difference over a larger
number of time-steps than three (as in TD3).

REFERENCES

[1] F. Richter, R. K. Orosco, and M. C. Yip, “Open-sourced reinforcement
learning environments for surgical robotics,” 2019.

[2] P. Kazanzides, Z. Chen, A. Deguet, G. S. Fischer, R. H. Taylor, and S. P.
DiMaio, “An open-source research kit for the da vinci® surgical system,”
in 2014 IEEE international conference on robotics and automation
(ICRA), pp. 6434–6439, IEEE, 2014.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
2015.

[4] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International Conference on Machine
Learning, pp. 1582–1591, 2018.

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learning,”
2013.

[6] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing v-rep to deep
robot learning,” 2019.

[7] G. A. Fontanelli, M. Selvaggio, M. Ferro, F. Ficuciello, M. Vendittelli,
and B. Siciliano, “A v-rep simulator for the da vinci research kit robotic
platform,” in 2018 7th IEEE International Conference on Biomedical
Robotics and Biomechatronics (Biorob), pp. 1056–1061, Aug 2018.

[8] Y. Wang, R. Gondokaryono, A. Munawar, and G. S. Fischer, “A convex
optimization-based dynamic model identification package for the da vinci
research kit,” IEEE Robotics and Automation Letters, vol. 4, pp. 3657–
3664, Oct 2019.

[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016.

